Abstract:Open-ended text generation has become a prominent task in natural language processing due to the rise of powerful (large) language models. However, evaluating the quality of these models and the employed decoding strategies remains challenging because of trade-offs among widely used metrics such as coherence, diversity, and perplexity. Decoding methods often excel in some metrics while underperforming in others, complicating the establishment of a clear ranking. In this paper, we present novel ranking strategies within this multicriteria framework. Specifically, we employ benchmarking approaches based on partial orderings and present a new summary metric designed to balance existing automatic indicators, providing a more holistic evaluation of text generation quality. Furthermore, we discuss the alignment of these approaches with human judgments. Our experiments demonstrate that the proposed methods offer a robust way to compare decoding strategies, exhibit similarities with human preferences, and serve as valuable tools in guiding model selection for open-ended text generation tasks. Finally, we suggest future directions for improving evaluation methodologies in text generation. Our codebase, datasets, and models are publicly available.
Abstract:Decoding strategies for large language models (LLMs) are a critical but often underexplored aspect of text generation tasks. Since LLMs produce probability distributions over the entire vocabulary, various decoding methods have been developed to transform these probabilities into coherent and fluent text, each with its own set of hyperparameters. In this study, we present a large-scale, comprehensive analysis of how hyperparameter selection affects text quality in open-ended text generation across multiple LLMs, datasets, and evaluation metrics. Through an extensive sensitivity analysis, we provide practical guidelines for hyperparameter tuning and demonstrate the substantial influence of these choices on text quality. Using three established datasets, spanning factual domains (e.g., news) and creative domains (e.g., fiction), we show that hyperparameter tuning significantly impacts generation quality, though its effects vary across models and tasks. We offer in-depth insights into these effects, supported by both human evaluations and a synthesis of widely-used automatic evaluation metrics.
Abstract:Decoding from the output distributions of large language models to produce high-quality text is a complex challenge in language modeling. Various approaches, such as beam search, sampling with temperature, $k-$sampling, nucleus $p-$sampling, typical decoding, contrastive decoding, and contrastive search, have been proposed to address this problem, aiming to improve coherence, diversity, as well as resemblance to human-generated text. In this study, we introduce adaptive contrastive search, a novel decoding strategy extending contrastive search by incorporating an adaptive degeneration penalty, guided by the estimated uncertainty of the model at each generation step. This strategy is designed to enhance both the creativity and diversity of the language modeling process while at the same time producing coherent and high-quality generated text output. Our findings indicate performance enhancement in both aspects, across different model architectures and datasets, underscoring the effectiveness of our method in text generation tasks. Our code base, datasets, and models are publicly available.