Abstract:How capable are diffusion models of generating synthetics texts? Recent research shows their strengths, with performance reaching that of auto-regressive LLMs. But are they also good in generating synthetic data if the training was under differential privacy? Here the evidence is missing, yet the promises from private image generation look strong. In this paper we address this open question by extensive experiments. At the same time, we critically assess (and reimplement) previous works on synthetic private text generation with LLMs and reveal some unmet assumptions that might have led to violating the differential privacy guarantees. Our results partly contradict previous non-private findings and show that fully open-source LLMs outperform diffusion models in the privacy regime. Our complete source codes, datasets, and experimental setup is publicly available to foster future research.
Abstract:Last few years have seen unprecedented advances in capabilities of Large Language Models (LLMs). These advancements promise to deeply benefit a vast array of application domains. However, due to their immense size, performing inference with LLMs is both costly and slow. Consequently, a plethora of recent work has proposed strategies to enhance inference efficiency, e.g., quantization, pruning, and caching. These acceleration strategies reduce the inference cost and latency, often by several factors, while maintaining much of the predictive performance measured via common benchmarks. In this work, we explore another critical aspect of LLM performance: demographic bias in model generations due to inference acceleration optimizations. Using a wide range of metrics, we probe bias in model outputs from a number of angles. Analysis of outputs before and after inference acceleration shows significant change in bias. Worryingly, these bias effects are complex and unpredictable. A combination of an acceleration strategy and bias type may show little bias change in one model but may lead to a large effect in another. Our results highlight a need for in-depth and case-by-case evaluation of model bias after it has been modified to accelerate inference.
Abstract:Deep learning models for NLP tasks are prone to variants of privacy attacks. To prevent privacy leakage, researchers have investigated word-level perturbations, relying on the formal guarantees of differential privacy (DP) in the embedding space. However, many existing approaches either achieve unsatisfactory performance in the high privacy regime when using the Laplacian or Gaussian mechanism, or resort to weaker relaxations of DP that are inferior to the canonical DP in terms of privacy strength. This raises the question of whether a new method for private word embedding can be designed to overcome these limitations. In this paper, we propose a novel private embedding method called the high dimensional truncated Laplacian mechanism. Specifically, we introduce a non-trivial extension of the truncated Laplacian mechanism, which was previously only investigated in one-dimensional space cases. Theoretically, we show that our method has a lower variance compared to the previous private word embedding methods. To further validate its effectiveness, we conduct comprehensive experiments on private embedding and downstream tasks using three datasets. Remarkably, even in the high privacy regime, our approach only incurs a slight decrease in utility compared to the non-private scenario.
Abstract:While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including inability to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAI-Co2, a novel human-AI co-construction framework. We formalize HAI-Co2 and discuss the difficult open research problems that it faces. Finally, we present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
Abstract:Applying differential privacy (DP) by means of the DP-SGD algorithm to protect individual data points during training is becoming increasingly popular in NLP. However, the choice of granularity at which DP is applied is often neglected. For example, neural machine translation (NMT) typically operates on the sentence-level granularity. From the perspective of DP, this setup assumes that each sentence belongs to a single person and any two sentences in the training dataset are independent. This assumption is however violated in many real-world NMT datasets, e.g. those including dialogues. For proper application of DP we thus must shift from sentences to entire documents. In this paper, we investigate NMT at both the sentence and document levels, analyzing the privacy/utility trade-off for both scenarios, and evaluating the risks of not using the appropriate privacy granularity in terms of leaking personally identifiable information (PII). Our findings indicate that the document-level NMT system is more resistant to membership inference attacks, emphasizing the significance of using the appropriate granularity when working with DP.
Abstract:Why does an argument end up in the final court decision? Was it deliberated or questioned during the oral hearings? Was there something in the hearings that triggered a particular judge to write a dissenting opinion? Despite the availability of the final judgments of the European Court of Human Rights (ECHR), none of these legal research questions can currently be answered as the ECHR's multilingual oral hearings are not transcribed, structured, or speaker-attributed. We address this fundamental gap by presenting LaCour!, the first corpus of textual oral arguments of the ECHR, consisting of 154 full hearings (2.1 million tokens from over 267 hours of video footage) in English, French, and other court languages, each linked to the corresponding final judgment documents. In addition to the transcribed and partially manually corrected text from the video, we provide sentence-level timestamps and manually annotated role and language labels. We also showcase LaCour! in a set of preliminary experiments that explore the interplay between questions and dissenting opinions. Apart from the use cases in legal NLP, we hope that law students or other interested parties will also use LaCour! as a learning resource, as it is freely available in various formats at https://huggingface.co/datasets/TrustHLT/LaCour.
Abstract:Neural machine translation (NMT) is a widely popular text generation task, yet there is a considerable research gap in the development of privacy-preserving NMT models, despite significant data privacy concerns for NMT systems. Differentially private stochastic gradient descent (DP-SGD) is a popular method for training machine learning models with concrete privacy guarantees; however, the implementation specifics of training a model with DP-SGD are not always clarified in existing models, with differing software libraries used and code bases not always being public, leading to reproducibility issues. To tackle this, we introduce DP-NMT, an open-source framework for carrying out research on privacy-preserving NMT with DP-SGD, bringing together numerous models, datasets, and evaluation metrics in one systematic software package. Our goal is to provide a platform for researchers to advance the development of privacy-preserving NMT systems, keeping the specific details of the DP-SGD algorithm transparent and intuitive to implement. We run a set of experiments on datasets from both general and privacy-related domains to demonstrate our framework in use. We make our framework publicly available and welcome feedback from the community.
Abstract:Although the NLP community has adopted central differential privacy as a go-to framework for privacy-preserving model training or data sharing, the choice and interpretation of the key parameter, privacy budget $\varepsilon$ that governs the strength of privacy protection, remains largely arbitrary. We argue that determining the $\varepsilon$ value should not be solely in the hands of researchers or system developers, but must also take into account the actual people who share their potentially sensitive data. In other words: Would you share your instant messages for $\varepsilon$ of 10? We address this research gap by designing, implementing, and conducting a behavioral experiment (311 lay participants) to study the behavior of people in uncertain decision-making situations with respect to privacy-threatening situations. Framing the risk perception in terms of two realistic NLP scenarios and using a vignette behavioral study help us determine what $\varepsilon$ thresholds would lead lay people to be willing to share sensitive textual data - to our knowledge, the first study of its kind.
Abstract:Protecting privacy in contemporary NLP models is gaining in importance. So does the need to mitigate social biases of such models. But can we have both at the same time? Existing research suggests that privacy preservation comes at the price of worsening biases in classification tasks. In this paper, we explore the extent to which this tradeoff really holds when we incorporate both privacy preservation and de-biasing techniques into training text generation models. How does improving the model along one dimension affect the other dimension as well as the utility of the model? We conduct an extensive set of experiments that include bias detection, privacy attacks, language modeling, and performance on downstream tasks.
Abstract:Most tasks in NLP require labeled data. Data labeling is often done on crowdsourcing platforms due to scalability reasons. However, publishing data on public platforms can only be done if no privacy-relevant information is included. Textual data often contains sensitive information like person names or locations. In this work, we investigate how removing personally identifiable information (PII) as well as applying differential privacy (DP) rewriting can enable text with privacy-relevant information to be used for crowdsourcing. We find that DP-rewriting before crowdsourcing can preserve privacy while still leading to good label quality for certain tasks and data. PII-removal led to good label quality in all examined tasks, however, there are no privacy guarantees given.