Abstract:In the age of misinformation, hallucination -- the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses -- represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common ``in the wild'' than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering. To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to generate (noisy) training data in other languages. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build a knowledge-intensive QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. We find that, while LLMs generate longer responses with more hallucinated tokens for higher-resource languages, there is no correlation between length-normalized hallucination rates of languages and their digital representation. Further, we find that smaller LLMs exhibit larger hallucination rates than larger models.
Abstract:Multi-Party Conversations (MPCs) are widely studied across disciplines, with social media as a primary data source due to their accessibility. However, these datasets raise privacy concerns and often reflect platform-specific properties. For example, interactions between speakers may be limited due to rigid platform structures (e.g., threads, tree-like discussions), which yield overly simplistic interaction patterns (e.g., as a consequence of ``reply-to'' links). This work explores the feasibility of generating diverse MPCs with instruction-tuned Large Language Models (LLMs) by providing deterministic constraints such as dialogue structure and participants' stance. We investigate two complementary strategies of leveraging LLMs in this context: (i.) LLMs as MPC generators, where we task the LLM to generate a whole MPC at once and (ii.) LLMs as MPC parties, where the LLM generates one turn of the conversation at a time, provided the conversation history. We next introduce an analytical framework to evaluate compliance with the constraints, content quality, and interaction complexity for both strategies. Finally, we assess the quality of obtained MPCs via human annotation and LLM-as-a-judge evaluations. We find stark differences among LLMs, with only some being able to generate high-quality MPCs. We also find that turn-by-turn generation yields better conformance to constraints and higher linguistic variability than generating MPCs in one pass. Nonetheless, our structural and qualitative evaluation indicates that both generation strategies can yield high-quality MPCs.
Abstract:Existing multilingual vision-language (VL) benchmarks often only cover a handful of languages. Consequently, evaluations of large vision-language models (LVLMs) predominantly target high-resource languages, underscoring the need for evaluation data for low-resource languages. To address this limitation, we introduce MVL-SIB, a massively multilingual vision-language benchmark that evaluates both cross-modal and text-only topical matching across 205 languages -- over 100 more than the most multilingual existing VL benchmarks encompass. We then benchmark a range of of open-weight LVLMs together with GPT-4o(-mini) on MVL-SIB. Our results reveal that LVLMs struggle in cross-modal topic matching in lower-resource languages, performing no better than chance on languages like N'Koo. Our analysis further reveals that VL support in LVLMs declines disproportionately relative to textual support for lower-resource languages, as evidenced by comparison of cross-modal and text-only topical matching performance. We further observe that open-weight LVLMs do not benefit from representing a topic with more than one image, suggesting that these models are not yet fully effective at handling multi-image tasks. By correlating performance on MVL-SIB with other multilingual VL benchmarks, we highlight that MVL-SIB serves as a comprehensive probe of multilingual VL understanding in LVLMs.
Abstract:While recent multilingual automatic speech recognition models claim to support thousands of languages, ASR for low-resource languages remains highly unreliable due to limited bimodal speech and text training data. Better multilingual spoken language understanding (SLU) can strengthen massively the robustness of multilingual ASR by levering language semantics to compensate for scarce training data, such as disambiguating utterances via context or exploiting semantic similarities across languages. Even more so, SLU is indispensable for inclusive speech technology in roughly half of all living languages that lack a formal writing system. However, the evaluation of multilingual SLU remains limited to shallower tasks such as intent classification or language identification. To address this, we present Fleurs-SLU, a multilingual SLU benchmark that encompasses topical speech classification in 102 languages and multiple-choice question answering through listening comprehension in 92 languages. We extensively evaluate both end-to-end speech classification models and cascaded systems that combine speech-to-text transcription with subsequent classification by large language models on Fleurs-SLU. Our results show that cascaded systems exhibit greater robustness in multilingual SLU tasks, though speech encoders can achieve competitive performance in topical speech classification when appropriately pre-trained. We further find a strong correlation between robust multilingual ASR, effective speech-to-text translation, and strong multilingual SLU, highlighting the mutual benefits between acoustic and semantic speech representations.
Abstract:Most Large Vision-Language Models (LVLMs) to date are trained predominantly on English data, which makes them struggle to understand non-English input and fail to generate output in the desired target language. Existing efforts mitigate these issues by adding multilingual training data, but do so in a largely ad-hoc manner, lacking insight into how different training mixes tip the scale for different groups of languages. In this work, we present a comprehensive investigation into the training strategies for massively multilingual LVLMs. First, we conduct a series of multi-stage experiments spanning 13 downstream vision-language tasks and 43 languages, systematically examining: (1) the number of training languages that can be included without degrading English performance and (2) optimal language distributions of pre-training as well as (3) instruction-tuning data. Further, we (4) investigate how to improve multilingual text-in-image understanding, and introduce a new benchmark for the task. Surprisingly, our analysis reveals that one can (i) include as many as 100 training languages simultaneously (ii) with as little as 25-50\% of non-English data, to greatly improve multilingual performance while retaining strong English performance. We further find that (iii) including non-English OCR data in pre-training and instruction-tuning is paramount for improving multilingual text-in-image understanding. Finally, we put all our findings together and train Centurio, a 100-language LVLM, offering state-of-the-art performance in an evaluation covering 14 tasks and 56 languages.
Abstract:Encoder architectures play a pivotal role in neural news recommenders by embedding the semantic and contextual information of news and users. Thus, research has heavily focused on enhancing the representational capabilities of news and user encoders to improve recommender performance. Despite the significant impact of encoder architectures on the quality of news and user representations, existing analyses of encoder designs focus only on the overall downstream recommendation performance. This offers a one-sided assessment of the encoders' similarity, ignoring more nuanced differences in their behavior, and potentially resulting in sub-optimal model selection. In this work, we perform a comprehensive analysis of encoder architectures in neural news recommender systems. We systematically evaluate the most prominent news and user encoder architectures, focusing on their (i) representational similarity, measured with the Central Kernel Alignment, (ii) overlap of generated recommendation lists, quantified with the Jaccard similarity, and (iii) the overall recommendation performance. Our analysis reveals that the complexity of certain encoding techniques is often empirically unjustified, highlighting the potential for simpler, more efficient architectures. By isolating the effects of individual components, we provide valuable insights for researchers and practitioners to make better informed decisions about encoder selection and avoid unnecessary complexity in the design of news recommenders.
Abstract:Recent advancements in multilingual speech encoding as well as transcription raise the question of the most effective approach to semantic speech classification. Concretely, can (1) end-to-end (E2E) classifiers obtained by fine-tuning state-of-the-art multilingual speech encoders (MSEs) match or surpass the performance of (2) cascading (CA), where speech is first transcribed into text and classification is delegated to a text-based classifier. To answer this, we first construct SpeechTaxi, an 80-hour multilingual dataset for semantic speech classification of Bible verses, covering 28 diverse languages. We then leverage SpeechTaxi to conduct a wide range of experiments comparing E2E and CA in monolingual semantic speech classification as well as in cross-lingual transfer. We find that E2E based on MSEs outperforms CA in monolingual setups, i.e., when trained on in-language data. However, MSEs seem to have poor cross-lingual transfer abilities, with E2E substantially lagging CA both in (1) zero-shot transfer to languages unseen in training and (2) multilingual training, i.e., joint training on multiple languages. Finally, we devise a novel CA approach based on transcription to Romanized text as a language-agnostic intermediate representation and show that it represents a robust solution for languages without native ASR support. Our SpeechTaxi dataset is publicly available at: https://huggingface.co/ datasets/LennartKeller/SpeechTaxi/.
Abstract:While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including inability to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAI-Co2, a novel human-AI co-construction framework. We formalize HAI-Co2 and discuss the difficult open research problems that it faces. Finally, we present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
Abstract:Multilingual sentence encoders are commonly obtained by training multilingual language models to map sentences from different languages into a shared semantic space. As such, they are subject to curse of multilinguality, a loss of monolingual representational accuracy due to parameter sharing. Another limitation of multilingual sentence encoders is the trade-off between monolingual and cross-lingual performance. Training for cross-lingual alignment of sentence embeddings distorts the optimal monolingual structure of semantic spaces of individual languages, harming the utility of sentence embeddings in monolingual tasks. In this work, we address both issues by modular training of sentence encoders, i.e., by separating monolingual specialization from cross-lingual alignment. We first efficiently train language-specific sentence encoders to avoid negative interference between languages (i.e., the curse). We then align all non-English monolingual encoders to the English encoder by training a cross-lingual alignment adapter on top of each, preventing interference with monolingual specialization from the first step. In both steps, we resort to contrastive learning on machine-translated paraphrase data. Monolingual and cross-lingual evaluations on semantic text similarity/relatedness and multiple-choice QA render our modular solution more effective than multilingual sentence encoders, especially benefiting low-resource languages.
Abstract:Research on token-level reference-free hallucination detection has predominantly focused on English, primarily due to the scarcity of robust datasets in other languages. This has hindered systematic investigations into the effectiveness of cross-lingual transfer for this important NLP application. To address this gap, we introduce ANHALTEN, a new evaluation dataset that extends the English hallucination detection dataset to German. To the best of our knowledge, this is the first work that explores cross-lingual transfer for token-level reference-free hallucination detection. ANHALTEN contains gold annotations in German that are parallel (i.e., directly comparable to the original English instances). We benchmark several prominent cross-lingual transfer approaches, demonstrating that larger context length leads to better hallucination detection in German, even without succeeding context. Importantly, we show that the sample-efficient few-shot transfer is the most effective approach in most setups. This highlights the practical benefits of minimal annotation effort in the target language for reference-free hallucination detection. Aiming to catalyze future research on cross-lingual token-level reference-free hallucination detection, we make ANHALTEN publicly available: https://github.com/janekh24/anhalten