Abstract:Encoder architectures play a pivotal role in neural news recommenders by embedding the semantic and contextual information of news and users. Thus, research has heavily focused on enhancing the representational capabilities of news and user encoders to improve recommender performance. Despite the significant impact of encoder architectures on the quality of news and user representations, existing analyses of encoder designs focus only on the overall downstream recommendation performance. This offers a one-sided assessment of the encoders' similarity, ignoring more nuanced differences in their behavior, and potentially resulting in sub-optimal model selection. In this work, we perform a comprehensive analysis of encoder architectures in neural news recommender systems. We systematically evaluate the most prominent news and user encoder architectures, focusing on their (i) representational similarity, measured with the Central Kernel Alignment, (ii) overlap of generated recommendation lists, quantified with the Jaccard similarity, and (iii) the overall recommendation performance. Our analysis reveals that the complexity of certain encoding techniques is often empirically unjustified, highlighting the potential for simpler, more efficient architectures. By isolating the effects of individual components, we provide valuable insights for researchers and practitioners to make better informed decisions about encoder selection and avoid unnecessary complexity in the design of news recommenders.
Abstract:Snapshot ensembles have been widely used in various fields of prediction. They allow for training an ensemble of prediction models at the cost of training a single one. They are known to yield more robust predictions by creating a set of diverse base models. In this paper, we introduce an approach to transfer the idea of snapshot ensembles to link prediction models in knowledge graphs. Moreover, since link prediction in knowledge graphs is a setup without explicit negative examples, we propose a novel training loop that iteratively creates negative examples using previous snapshot models. An evaluation with four base models across four datasets shows that this approach constantly outperforms the single model approach, while keeping the training time constant.
Abstract:Large Language Models (LLMs) have demonstrated unprecedented prowess across various natural language processing tasks in various application domains. Recent studies show that LLMs can be leveraged to perform lexical semantic tasks, such as Knowledge Base Completion (KBC) or Ontology Learning (OL). However, it has not effectively been verified whether their success is due to their ability to reason over unstructured or semi-structured data, or their effective learning of linguistic patterns and senses alone. This unresolved question is particularly crucial when dealing with domain-specific data, where the lexical senses and their meaning can completely differ from what a LLM has learned during its training stage. This paper investigates the following question: Do LLMs really adapt to domains and remain consistent in the extraction of structured knowledge, or do they only learn lexical senses instead of reasoning? To answer this question and, we devise a controlled experiment setup that uses WordNet to synthesize parallel corpora, with English and gibberish terms. We examine the differences in the outputs of LLMs for each corpus in two OL tasks: relation extraction and taxonomy discovery. Empirical results show that, while adapting to the gibberish corpora, off-the-shelf LLMs do not consistently reason over semantic relationships between concepts, and instead leverage senses and their frame. However, fine-tuning improves the performance of LLMs on lexical semantic tasks even when the domain-specific terms are arbitrary and unseen during pre-training, hinting at the applicability of pre-trained LLMs for OL.
Abstract:Rapidly growing numbers of multilingual news consumers pose an increasing challenge to news recommender systems in terms of providing customized recommendations. First, existing neural news recommenders, even when powered by multilingual language models (LMs), suffer substantial performance losses in zero-shot cross-lingual transfer (ZS-XLT). Second, the current paradigm of fine-tuning the backbone LM of a neural recommender on task-specific data is computationally expensive and infeasible in few-shot recommendation and cold-start setups, where data is scarce or completely unavailable. In this work, we propose a news-adapted sentence encoder (NaSE), domain-specialized from a pretrained massively multilingual sentence encoder (SE). To this end, we construct and leverage PolyNews and PolyNewsParallel, two multilingual news-specific corpora. With the news-adapted multilingual SE in place, we test the effectiveness of (i.e., question the need for) supervised fine-tuning for news recommendation, and propose a simple and strong baseline based on (i) frozen NaSE embeddings and (ii) late click-behavior fusion. We show that NaSE achieves state-of-the-art performance in ZS-XLT in true cold-start and few-shot news recommendation.
Abstract:In the rapidly evolving landscape of eCommerce, Artificial Intelligence (AI) based pricing algorithms, particularly those utilizing Reinforcement Learning (RL), are becoming increasingly prevalent. This rise has led to an inextricable pricing situation with the potential for market collusion. Our research employs an experimental oligopoly model of repeated price competition, systematically varying the environment to cover scenarios from basic economic theory to subjective consumer demand preferences. We also introduce a novel demand framework that enables the implementation of various demand models, allowing for a weighted blending of different models. In contrast to existing research in this domain, we aim to investigate the strategies and emerging pricing patterns developed by the agents, which may lead to a collusive outcome. Furthermore, we investigate a scenario where agents cannot observe their competitors' prices. Finally, we provide a comprehensive legal analysis across all scenarios. Our findings indicate that RL-based AI agents converge to a collusive state characterized by the charging of supracompetitive prices, without necessarily requiring inter-agent communication. Implementing alternative RL algorithms, altering the number of agents or simulation settings, and restricting the scope of the agents' observation space does not significantly impact the collusive market outcome behavior.
Abstract:Geospatial data plays a central role in modeling our world, for which OpenStreetMap (OSM) provides a rich source of such data. While often spatial data is represented in a tabular format, a graph based representation provides the possibility to interconnect entities which would have been separated in a tabular representation. We propose in our paper a framework which supports a planet scale transformation of OpenStreetMap data into a Spatial Temporal Knowledge Graph. In addition to OpenStreetMap data, we align the different OpenStreetMap geometries on individual h3 grid cells. We compare our constructed spatial knowledge graph to other spatial knowledge graphs and outline our contribution in this paper. As a basis for our computation, we use Apache Sedona as a computational framework for our Spatial Temporal Knowledge Graph construction
Abstract:Diabetes is a worldwide health issue affecting millions of people. Machine learning methods have shown promising results in improving diabetes prediction, particularly through the analysis of diverse data types, namely gene expression data. While gene expression data can provide valuable insights, challenges arise from the fact that the sample sizes in expression datasets are usually limited, and the data from different datasets with different gene expressions cannot be easily combined. This work proposes a novel approach to address these challenges by integrating multiple gene expression datasets and domain-specific knowledge using knowledge graphs, a unique tool for biomedical data integration. KG embedding methods are then employed to generate vector representations, serving as inputs for a classifier. Experiments demonstrated the efficacy of our approach, revealing improvements in diabetes prediction when integrating multiple gene expression datasets and domain-specific knowledge about protein functions and interactions.
Abstract:Digital news platforms use news recommenders as the main instrument to cater to the individual information needs of readers. Despite an increasingly language-diverse online community, in which many Internet users consume news in multiple languages, the majority of news recommendation focuses on major, resource-rich languages, and English in particular. Moreover, nearly all news recommendation efforts assume monolingual news consumption, whereas more and more users tend to consume information in at least two languages. Accordingly, the existing body of work on news recommendation suffers from a lack of publicly available multilingual benchmarks that would catalyze development of news recommenders effective in multilingual settings and for low-resource languages. Aiming to fill this gap, we introduce xMIND, an open, multilingual news recommendation dataset derived from the English MIND dataset using machine translation, covering a set of 14 linguistically and geographically diverse languages, with digital footprints of varying sizes. Using xMIND, we systematically benchmark several state-of-the-art content-based neural news recommenders (NNRs) in both zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer scenarios, considering both monolingual and bilingual news consumption patterns. Our findings reveal that (i) current NNRs, even when based on a multilingual language model, suffer from substantial performance losses under ZS-XLT and that (ii) inclusion of target-language data in FS-XLT training has limited benefits, particularly when combined with a bilingual news consumption. Our findings thus warrant a broader research effort in multilingual and cross-lingual news recommendation. The xMIND dataset is available at https://github.com/andreeaiana/xMIND.
Abstract:Knowledge graph embedding models (KGEMs) developed for link prediction learn vector representations for graph entities, known as embeddings. A common tacit assumption is the KGE entity similarity assumption, which states that these KGEMs retain the graph's structure within their embedding space, i.e., position similar entities close to one another. This desirable property make KGEMs widely used in downstream tasks such as recommender systems or drug repurposing. Yet, the alignment of graph similarity with embedding space similarity has rarely been formally evaluated. Typically, KGEMs are assessed based on their sole link prediction capabilities, using ranked-based metrics such as Hits@K or Mean Rank. This paper challenges the prevailing assumption that entity similarity in the graph is inherently mirrored in the embedding space. Therefore, we conduct extensive experiments to measure the capability of KGEMs to cluster similar entities together, and investigate the nature of the underlying factors. Moreover, we study if different KGEMs expose a different notion of similarity. Datasets, pre-trained embeddings and code are available at: https://github.com/nicolas-hbt/similar-embeddings.
Abstract:Knowledge graphs (KGs) comprise entities interconnected by relations of different semantic meanings. KGs are being used in a wide range of applications. However, they inherently suffer from incompleteness, i.e. entities or facts about entities are missing. Consequently, a larger body of works focuses on the completion of missing information in KGs, which is commonly referred to as link prediction (LP). This task has traditionally and extensively been studied in the transductive setting, where all entities and relations in the testing set are observed during training. Recently, several works have tackled the LP task under more challenging settings, where entities and relations in the test set may be unobserved during training, or appear in only a few facts. These works are known as inductive, few-shot, and zero-shot link prediction. In this work, we conduct a systematic review of existing works in this area. A thorough analysis leads us to point out the undesirable existence of diverging terminologies and task definitions for the aforementioned settings, which further limits the possibility of comparison between recent works. We consequently aim at dissecting each setting thoroughly, attempting to reveal its intrinsic characteristics. A unifying nomenclature is ultimately proposed to refer to each of them in a simple and consistent manner.