Sandy
Abstract:Relational databases, organized into tables connected by primary-foreign key relationships, are a common format for organizing data. Making predictions on relational data often involves transforming them into a flat tabular format through table joins and feature engineering, which serve as input to tabular methods. However, designing features that fully capture complex relational patterns remains challenging. Graph Neural Networks (GNNs) offer a compelling alternative by inherently modeling these relationships, but their time overhead during inference limits their applicability for real-time scenarios. In this work, we aim to bridge this gap by leveraging existing feature engineering efforts to enhance the efficiency of GNNs in relational databases. Specifically, we use GNNs to capture complex relationships within relational databases, patterns that are difficult to featurize, while employing engineered features to encode temporal information, thereby avoiding the need to retain the entire historical graph and enabling the use of smaller, more efficient graphs. Our \textsc{LightRDL} approach not only improves efficiency, but also outperforms existing models. Experimental results on the RelBench benchmark demonstrate that our framework achieves up to $33\%$ performance improvement and a $526\times$ inference speedup compared to GNNs, making it highly suitable for real-time inference.
Abstract:With the wide and cross-domain adoption of Large Language Models, it becomes crucial to assess to which extent the statistical correlations in training data, which underlie their impressive performance, hide subtle and potentially troubling biases. Gender bias in LLMs has been widely investigated from the perspectives of works, hobbies, and emotions typically associated with a specific gender. In this study, we introduce a novel perspective. We investigate whether LLMs can predict an individual's gender based solely on online shopping histories and whether these predictions are influenced by gender biases and stereotypes. Using a dataset of historical online purchases from users in the United States, we evaluate the ability of six LLMs to classify gender and we then analyze their reasoning and products-gender co-occurrences. Results indicate that while models can infer gender with moderate accuracy, their decisions are often rooted in stereotypical associations between product categories and gender. Furthermore, explicit instructions to avoid bias reduce the certainty of model predictions, but do not eliminate stereotypical patterns. Our findings highlight the persistent nature of gender biases in LLMs and emphasize the need for robust bias-mitigation strategies.
Abstract:Personality Computing is a field at the intersection of Personality Psychology and Computer Science. Started in 2005, research in the field utilizes computational methods to understand and predict human personality traits. The expansion of the field has been very rapid and, by analyzing digital footprints (text, images, social media, etc.), it helped to develop systems that recognize and even replicate human personality. While offering promising applications in talent recruiting, marketing and healthcare, the ethical implications of Personality Computing are significant. Concerns include data privacy, algorithmic bias, and the potential for manipulation by personality-aware Artificial Intelligence. This paper provides an overview of the field, explores key methodologies, discusses the challenges and threats, and outlines potential future directions for responsible development and deployment of Personality Computing technologies.
Abstract:Multi-Party Conversations (MPCs) are widely studied across disciplines, with social media as a primary data source due to their accessibility. However, these datasets raise privacy concerns and often reflect platform-specific properties. For example, interactions between speakers may be limited due to rigid platform structures (e.g., threads, tree-like discussions), which yield overly simplistic interaction patterns (e.g., as a consequence of ``reply-to'' links). This work explores the feasibility of generating diverse MPCs with instruction-tuned Large Language Models (LLMs) by providing deterministic constraints such as dialogue structure and participants' stance. We investigate two complementary strategies of leveraging LLMs in this context: (i.) LLMs as MPC generators, where we task the LLM to generate a whole MPC at once and (ii.) LLMs as MPC parties, where the LLM generates one turn of the conversation at a time, provided the conversation history. We next introduce an analytical framework to evaluate compliance with the constraints, content quality, and interaction complexity for both strategies. Finally, we assess the quality of obtained MPCs via human annotation and LLM-as-a-judge evaluations. We find stark differences among LLMs, with only some being able to generate high-quality MPCs. We also find that turn-by-turn generation yields better conformance to constraints and higher linguistic variability than generating MPCs in one pass. Nonetheless, our structural and qualitative evaluation indicates that both generation strategies can yield high-quality MPCs.
Abstract:Point cloud registration approaches often fail when the overlap between point clouds is low due to noisy point correspondences. This work introduces a novel cross-attention mechanism tailored for Transformer-based architectures that tackles this problem, by fusing information from coordinates and features at the super-point level between point clouds. This formulation has remained unexplored primarily because it must guarantee rotation and translation invariance since point clouds reside in different and independent reference frames. We integrate the Gromov-Wasserstein distance into the cross-attention formulation to jointly compute distances between points across different point clouds and account for their geometric structure. By doing so, points from two distinct point clouds can attend to each other under arbitrary rigid transformations. At the point level, we also devise a self-attention mechanism that aggregates the local geometric structure information into point features for fine matching. Our formulation boosts the number of inlier correspondences, thereby yielding more precise registration results compared to state-of-the-art approaches. We have conducted an extensive evaluation on 3DMatch, 3DLoMatch, KITTI, and 3DCSR datasets.
Abstract:Continuous control tasks often involve high-dimensional, dynamic, and non-linear environments. State-of-the-art performance in these tasks is achieved through complex closed-box policies that are effective, but suffer from an inherent opacity. Interpretable policies, while generally underperforming compared to their closed-box counterparts, advantageously facilitate transparent decision-making within automated systems. Hence, their usage is often essential for diagnosing and mitigating errors, supporting ethical and legal accountability, and fostering trust among stakeholders. In this paper, we propose SMOSE, a novel method to train sparsely activated interpretable controllers, based on a top-1 Mixture-of-Experts architecture. SMOSE combines a set of interpretable decisionmakers, trained to be experts in different basic skills, and an interpretable router that assigns tasks among the experts. The training is carried out via state-of-the-art Reinforcement Learning algorithms, exploiting load-balancing techniques to ensure fair expert usage. We then distill decision trees from the weights of the router, significantly improving the ease of interpretation. We evaluate SMOSE on six benchmark environments from MuJoCo: our method outperforms recent interpretable baselines and narrows the gap with noninterpretable state-of-the-art algorithms
Abstract:As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from the widely popular Stanford Prison Experiment, we contribute to this line of research by studying interaction patterns of LLM agents in a context characterized by strict social hierarchy. We do so by specifically studying two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent who seeks to achieve a specific goal (i.e., obtaining additional yard time or escape from prison). Leveraging 200 experimental scenarios for a total of 2,000 machine-machine conversations across five different popular LLMs, we provide a set of noteworthy findings. We first document how some models consistently fail in carrying out a conversation in our multi-agent setup where power dynamics are at play. Then, for the models that were able to engage in successful interactions, we empirically show how the goal that an agent is set to achieve impacts primarily its persuasiveness, while having a negligible effect with respect to the agent's anti-social behavior. Third, we highlight how agents' personas, and particularly the guard's personality, drive both the likelihood of successful persuasion from the prisoner and the emergence of anti-social behaviors. Fourth, we show that even without explicitly prompting for specific personalities, anti-social behavior emerges by simply assigning agents' roles. These results bear implications for the development of interactive LLM agents as well as the debate on their societal impact.
Abstract:Algorithmic Recourse (AR) aims to provide users with actionable steps to overturn unfavourable decisions made by machine learning predictors. However, these actions often take time to implement (e.g., getting a degree can take years), and their effects may vary as the world evolves. Thus, it is natural to ask for recourse that remains valid in a dynamic environment. In this paper, we study the robustness of algorithmic recourse over time by casting the problem through the lens of causality. We demonstrate theoretically and empirically that (even robust) causal AR methods can fail over time except in the - unlikely - case that the world is stationary. Even more critically, unless the world is fully deterministic, counterfactual AR cannot be solved optimally. To account for this, we propose a simple yet effective algorithm for temporal AR that explicitly accounts for time. Our simulations on synthetic and realistic datasets show how considering time produces more resilient solutions to potential trends in the data distribution.
Abstract:As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from the widely popular Stanford Prison Experiment, we contribute to this line of research by studying interaction patterns of LLM agents in a context characterized by strict social hierarchy. We do so by specifically studying two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent who seeks to achieve a specific goal (i.e., obtaining additional yard time or escape from prison). Leveraging 200 experimental scenarios for a total of 2,000 machine-machine conversations across five different popular LLMs, we provide a set of noteworthy findings. We first document how some models consistently fail in carrying out a conversation in our multi-agent setup where power dynamics are at play. Then, for the models that were able to engage in successful interactions, we empirically show how the goal that an agent is set to achieve impacts primarily its persuasiveness, while having a negligible effect with respect to the agent's anti-social behavior. Third, we highlight how agents' personas, and particularly the guard's personality, drive both the likelihood of successful persuasion from the prisoner and the emergence of anti-social behaviors. Fourth, we show that even without explicitly prompting for specific personalities, anti-social behavior emerges by simply assigning agents' roles. These results bear implications for the development of interactive LLM agents as well as the debate on their societal impact.
Abstract:Assessing the performance of systems to classify Multi-Party Conversations (MPC) is challenging due to the interconnection between linguistic and structural characteristics of conversations. Conventional evaluation methods often overlook variances in model behavior across different levels of structural complexity on interaction graphs. In this work, we propose a methodological pipeline to investigate model performance across specific structural attributes of conversations. As a proof of concept we focus on Response Selection and Addressee Recognition tasks, to diagnose model weaknesses. To this end, we extract representative diagnostic subdatasets with a fixed number of users and a good structural variety from a large and open corpus of online MPCs. We further frame our work in terms of data minimization, avoiding the use of original usernames to preserve privacy, and propose alternatives to using original text messages. Results show that response selection relies more on the textual content of conversations, while addressee recognition requires capturing their structural dimension. Using an LLM in a zero-shot setting, we further highlight how sensitivity to prompt variations is task-dependent.