Sandy
Abstract:Continuous control tasks often involve high-dimensional, dynamic, and non-linear environments. State-of-the-art performance in these tasks is achieved through complex closed-box policies that are effective, but suffer from an inherent opacity. Interpretable policies, while generally underperforming compared to their closed-box counterparts, advantageously facilitate transparent decision-making within automated systems. Hence, their usage is often essential for diagnosing and mitigating errors, supporting ethical and legal accountability, and fostering trust among stakeholders. In this paper, we propose SMOSE, a novel method to train sparsely activated interpretable controllers, based on a top-1 Mixture-of-Experts architecture. SMOSE combines a set of interpretable decisionmakers, trained to be experts in different basic skills, and an interpretable router that assigns tasks among the experts. The training is carried out via state-of-the-art Reinforcement Learning algorithms, exploiting load-balancing techniques to ensure fair expert usage. We then distill decision trees from the weights of the router, significantly improving the ease of interpretation. We evaluate SMOSE on six benchmark environments from MuJoCo: our method outperforms recent interpretable baselines and narrows the gap with noninterpretable state-of-the-art algorithms
Abstract:As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from the widely popular Stanford Prison Experiment, we contribute to this line of research by studying interaction patterns of LLM agents in a context characterized by strict social hierarchy. We do so by specifically studying two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent who seeks to achieve a specific goal (i.e., obtaining additional yard time or escape from prison). Leveraging 200 experimental scenarios for a total of 2,000 machine-machine conversations across five different popular LLMs, we provide a set of noteworthy findings. We first document how some models consistently fail in carrying out a conversation in our multi-agent setup where power dynamics are at play. Then, for the models that were able to engage in successful interactions, we empirically show how the goal that an agent is set to achieve impacts primarily its persuasiveness, while having a negligible effect with respect to the agent's anti-social behavior. Third, we highlight how agents' personas, and particularly the guard's personality, drive both the likelihood of successful persuasion from the prisoner and the emergence of anti-social behaviors. Fourth, we show that even without explicitly prompting for specific personalities, anti-social behavior emerges by simply assigning agents' roles. These results bear implications for the development of interactive LLM agents as well as the debate on their societal impact.
Abstract:Algorithmic Recourse (AR) aims to provide users with actionable steps to overturn unfavourable decisions made by machine learning predictors. However, these actions often take time to implement (e.g., getting a degree can take years), and their effects may vary as the world evolves. Thus, it is natural to ask for recourse that remains valid in a dynamic environment. In this paper, we study the robustness of algorithmic recourse over time by casting the problem through the lens of causality. We demonstrate theoretically and empirically that (even robust) causal AR methods can fail over time except in the - unlikely - case that the world is stationary. Even more critically, unless the world is fully deterministic, counterfactual AR cannot be solved optimally. To account for this, we propose a simple yet effective algorithm for temporal AR that explicitly accounts for time. Our simulations on synthetic and realistic datasets show how considering time produces more resilient solutions to potential trends in the data distribution.
Abstract:As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from the widely popular Stanford Prison Experiment, we contribute to this line of research by studying interaction patterns of LLM agents in a context characterized by strict social hierarchy. We do so by specifically studying two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent who seeks to achieve a specific goal (i.e., obtaining additional yard time or escape from prison). Leveraging 200 experimental scenarios for a total of 2,000 machine-machine conversations across five different popular LLMs, we provide a set of noteworthy findings. We first document how some models consistently fail in carrying out a conversation in our multi-agent setup where power dynamics are at play. Then, for the models that were able to engage in successful interactions, we empirically show how the goal that an agent is set to achieve impacts primarily its persuasiveness, while having a negligible effect with respect to the agent's anti-social behavior. Third, we highlight how agents' personas, and particularly the guard's personality, drive both the likelihood of successful persuasion from the prisoner and the emergence of anti-social behaviors. Fourth, we show that even without explicitly prompting for specific personalities, anti-social behavior emerges by simply assigning agents' roles. These results bear implications for the development of interactive LLM agents as well as the debate on their societal impact.
Abstract:Assessing the performance of systems to classify Multi-Party Conversations (MPC) is challenging due to the interconnection between linguistic and structural characteristics of conversations. Conventional evaluation methods often overlook variances in model behavior across different levels of structural complexity on interaction graphs. In this work, we propose a methodological pipeline to investigate model performance across specific structural attributes of conversations. As a proof of concept we focus on Response Selection and Addressee Recognition tasks, to diagnose model weaknesses. To this end, we extract representative diagnostic subdatasets with a fixed number of users and a good structural variety from a large and open corpus of online MPCs. We further frame our work in terms of data minimization, avoiding the use of original usernames to preserve privacy, and propose alternatives to using original text messages. Results show that response selection relies more on the textual content of conversations, while addressee recognition requires capturing their structural dimension. Using an LLM in a zero-shot setting, we further highlight how sensitivity to prompt variations is task-dependent.
Abstract:In recent years, there have been significant advancements in computer vision which have led to the widespread deployment of image recognition and generation systems in socially relevant applications, from hiring to security screening. However, the prevalence of biases within these systems has raised significant ethical and social concerns. The most extensively studied biases in this context are related to gender, race and age. Yet, other biases are equally pervasive and harmful, such as lookism, i.e., the preferential treatment of individuals based on their physical appearance. Lookism remains under-explored in computer vision but can have profound implications not only by perpetuating harmful societal stereotypes but also by undermining the fairness and inclusivity of AI technologies. Thus, this paper advocates for the systematic study of lookism as a critical bias in computer vision models. Through a comprehensive review of existing literature, we identify three areas of intersection between lookism and computer vision. We illustrate them by means of examples and a user study. We call for an interdisciplinary approach to address lookism, urging researchers, developers, and policymakers to prioritize the development of equitable computer vision systems that respect and reflect the diversity of human appearances.
Abstract:The challenge of Multimodal Deformable Image Registration (MDIR) lies in the conversion and alignment of features between images of different modalities. Generative models (GMs) cannot retain the necessary information enough from the source modality to the target one, while non-GMs struggle to align features across these two modalities. In this paper, we propose a novel coarse-to-fine MDIR framework,LLM-Morph, which is applicable to various pre-trained Large Language Models (LLMs) to solve these concerns by aligning the deep features from different modal medical images. Specifically, we first utilize a CNN encoder to extract deep visual features from cross-modal image pairs, then we use the first adapter to adjust these tokens, and use LoRA in pre-trained LLMs to fine-tune their weights, both aimed at eliminating the domain gap between the pre-trained LLMs and the MDIR task. Third, for the alignment of tokens, we utilize other four adapters to transform the LLM-encoded tokens into multi-scale visual features, generating multi-scale deformation fields and facilitating the coarse-to-fine MDIR task. Extensive experiments in MR-CT Abdomen and SR-Reg Brain datasets demonstrate the effectiveness of our framework and the potential of pre-trained LLMs for MDIR task. Our code is availabel at: https://github.com/ninjannn/LLM-Morph.
Abstract:We present the first application of modern Hopfield networks to the problem of portfolio optimization. We performed an extensive study based on combinatorial purged cross-validation over several datasets and compared our results to both traditional and deep-learning-based methods for portfolio selection. Compared to state-of-the-art deep-learning methods such as Long-Short Term Memory networks and Transformers, we find that the proposed approach performs on par or better, while providing faster training times and better stability. Our results show that Modern Hopfield Networks represent a promising approach to portfolio optimization, allowing for an efficient, scalable, and robust solution for asset allocation, risk management, and dynamic rebalancing.
Abstract:The separation power of a machine learning model refers to its capacity to distinguish distinct inputs, and it is often employed as a proxy for its expressivity. In this paper, we propose a theoretical framework to investigate the separation power of equivariant neural networks with point-wise activations. Using the proposed framework, we can derive an explicit description of inputs indistinguishable by a family of neural networks with given architecture, demonstrating that it remains unaffected by the choice of non-polynomial activation function employed. We are able to understand the role played by activation functions in separability. Indeed, we show that all non-polynomial activations, such as ReLU and sigmoid, are equivalent in terms of expressivity, and that they reach maximum discrimination capacity. We demonstrate how assessing the separation power of an equivariant neural network can be simplified to evaluating the separation power of minimal representations. We conclude by illustrating how these minimal components form a hierarchy in separation power.
Abstract:Recently, diffusion models have made significant strides in synthesizing realistic 2D human images based on provided text prompts. Building upon this, researchers have extended 2D text-to-image diffusion models into the 3D domain for generating human textures (UV Maps). However, some important problems about UV Map Generative models are still not solved, i.e., how to generate personalized texture maps for any given face image, and how to define and evaluate the quality of these generated texture maps. To solve the above problems, we introduce a novel method, UVMap-ID, which is a controllable and personalized UV Map generative model. Unlike traditional large-scale training methods in 2D, we propose to fine-tune a pre-trained text-to-image diffusion model which is integrated with a face fusion module for achieving ID-driven customized generation. To support the finetuning strategy, we introduce a small-scale attribute-balanced training dataset, including high-quality textures with labeled text and Face ID. Additionally, we introduce some metrics to evaluate the multiple aspects of the textures. Finally, both quantitative and qualitative analyses demonstrate the effectiveness of our method in controllable and personalized UV Map generation. Code is publicly available via https://github.com/twowwj/UVMap-ID.