Abstract:As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from the widely popular Stanford Prison Experiment, we contribute to this line of research by studying interaction patterns of LLM agents in a context characterized by strict social hierarchy. We do so by specifically studying two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent who seeks to achieve a specific goal (i.e., obtaining additional yard time or escape from prison). Leveraging 200 experimental scenarios for a total of 2,000 machine-machine conversations across five different popular LLMs, we provide a set of noteworthy findings. We first document how some models consistently fail in carrying out a conversation in our multi-agent setup where power dynamics are at play. Then, for the models that were able to engage in successful interactions, we empirically show how the goal that an agent is set to achieve impacts primarily its persuasiveness, while having a negligible effect with respect to the agent's anti-social behavior. Third, we highlight how agents' personas, and particularly the guard's personality, drive both the likelihood of successful persuasion from the prisoner and the emergence of anti-social behaviors. Fourth, we show that even without explicitly prompting for specific personalities, anti-social behavior emerges by simply assigning agents' roles. These results bear implications for the development of interactive LLM agents as well as the debate on their societal impact.
Abstract:As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from the widely popular Stanford Prison Experiment, we contribute to this line of research by studying interaction patterns of LLM agents in a context characterized by strict social hierarchy. We do so by specifically studying two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent who seeks to achieve a specific goal (i.e., obtaining additional yard time or escape from prison). Leveraging 200 experimental scenarios for a total of 2,000 machine-machine conversations across five different popular LLMs, we provide a set of noteworthy findings. We first document how some models consistently fail in carrying out a conversation in our multi-agent setup where power dynamics are at play. Then, for the models that were able to engage in successful interactions, we empirically show how the goal that an agent is set to achieve impacts primarily its persuasiveness, while having a negligible effect with respect to the agent's anti-social behavior. Third, we highlight how agents' personas, and particularly the guard's personality, drive both the likelihood of successful persuasion from the prisoner and the emergence of anti-social behaviors. Fourth, we show that even without explicitly prompting for specific personalities, anti-social behavior emerges by simply assigning agents' roles. These results bear implications for the development of interactive LLM agents as well as the debate on their societal impact.
Abstract:The potential effectiveness of counterspeech as a hate speech mitigation strategy is attracting increasing interest in the NLG research community, particularly towards the task of automatically producing it. However, automatically generated responses often lack the argumentative richness which characterises expert-produced counterspeech. In this work, we focus on two aspects of counterspeech generation to produce more cogent responses. First, by investigating the tension between helpfulness and harmlessness of LLMs, we test whether the presence of safety guardrails hinders the quality of the generations. Secondly, we assess whether attacking a specific component of the hate speech results in a more effective argumentative strategy to fight online hate. By conducting an extensive human and automatic evaluation, we show how the presence of safety guardrails can be detrimental also to a task that inherently aims at fostering positive social interactions. Moreover, our results show that attacking a specific component of the hate speech, and in particular its implicit negative stereotype and its hateful parts, leads to higher-quality generations.
Abstract:Assessing the performance of systems to classify Multi-Party Conversations (MPC) is challenging due to the interconnection between linguistic and structural characteristics of conversations. Conventional evaluation methods often overlook variances in model behavior across different levels of structural complexity on interaction graphs. In this work, we propose a methodological pipeline to investigate model performance across specific structural attributes of conversations. As a proof of concept we focus on Response Selection and Addressee Recognition tasks, to diagnose model weaknesses. To this end, we extract representative diagnostic subdatasets with a fixed number of users and a good structural variety from a large and open corpus of online MPCs. We further frame our work in terms of data minimization, avoiding the use of original usernames to preserve privacy, and propose alternatives to using original text messages. Results show that response selection relies more on the textual content of conversations, while addressee recognition requires capturing their structural dimension. Using an LLM in a zero-shot setting, we further highlight how sensitivity to prompt variations is task-dependent.
Abstract:Automatic methods for generating and gathering linguistic data have proven effective for fine-tuning Language Models (LMs) in languages less resourced than English. Still, while there has been emphasis on data quantity, less attention has been given to its quality. In this work, we investigate the impact of human intervention on machine-generated data when fine-tuning dialogical models. In particular, we study (1) whether post-edited dialogues exhibit higher perceived quality compared to the originals that were automatically generated; (2) whether fine-tuning with post-edited dialogues results in noticeable differences in the generated outputs; and (3) whether post-edited dialogues influence the outcomes when considering the parameter size of the LMs. To this end we created HED-IT, a large-scale dataset where machine-generated dialogues are paired with the version post-edited by humans. Using both the edited and unedited portions of HED-IT, we fine-tuned three different sizes of an LM. Results from both human and automatic evaluation show that the different quality of training data is clearly perceived and it has an impact also on the models trained on such data. Additionally, our findings indicate that larger models are less sensitive to data quality, whereas this has a crucial impact on smaller models. These results enhance our comprehension of the impact of human intervention on training data in the development of high-quality LMs.
Abstract:In recent years, counterspeech has emerged as one of the most promising strategies to fight online hate. These non-escalatory responses tackle online abuse while preserving the freedom of speech of the users, and can have a tangible impact in reducing online and offline violence. Recently, there has been growing interest from the Natural Language Processing (NLP) community in addressing the challenges of analysing, collecting, classifying, and automatically generating counterspeech, to reduce the huge burden of manually producing it. In particular, researchers have taken different directions in addressing these challenges, thus providing a variety of related tasks and resources. In this paper, we provide a guide for doing research on counterspeech, by describing - with detailed examples - the steps to undertake, and providing best practices that can be learnt from the NLP studies on this topic. Finally, we discuss open challenges and future directions of counterspeech research in NLP.
Abstract:Counter Narratives (CNs) are non-negative textual responses to Hate Speech (HS) aiming at defusing online hatred and mitigating its spreading across media. Despite the recent increase in HS content posted online, research on automatic CN generation has been relatively scarce and predominantly focused on English. In this paper, we present CONAN-EUS, a new Basque and Spanish dataset for CN generation developed by means of Machine Translation (MT) and professional post-edition. Being a parallel corpus, also with respect to the original English CONAN, it allows to perform novel research on multilingual and crosslingual automatic generation of CNs. Our experiments on CN generation with mT5, a multilingual encoder-decoder model, show that generation greatly benefits from training on post-edited data, as opposed to relying on silver MT data only. These results are confirmed by their correlation with a qualitative manual evaluation, demonstrating that manually revised training data remains crucial for the quality of the generated CNs. Furthermore, multilingual data augmentation improves results over monolingual settings for structurally similar languages such as English and Spanish, while being detrimental for Basque, a language isolate. Similar findings occur in zero-shot crosslingual evaluations, where model transfer (fine-tuning in English and generating in a different target language) outperforms fine-tuning mT5 on machine translated data for Spanish but not for Basque. This provides an interesting insight into the asymmetry in the multilinguality of generative models, a challenging topic which is still open to research.
Abstract:Current text classification approaches usually focus on the content to be classified. Contextual aspects (both linguistic and extra-linguistic) are usually neglected, even in tasks based on online discussions. Still in many cases the multi-party and multi-turn nature of the context from which these elements are selected can be fruitfully exploited. In this work, we propose a series of experiments on a large dataset for stance detection in English, in which we evaluate the contribution of different types of contextual information, i.e. linguistic, structural and temporal, by feeding them as natural language input into a transformer-based model. We also experiment with different amounts of training data and analyse the topology of local discussion networks in a privacy-compliant way. Results show that structural information can be highly beneficial to text classification but only under certain circumstances (e.g. depending on the amount of training data and on discussion chain complexity). Indeed, we show that contextual information on smaller datasets from other classification tasks does not yield significant improvements. Our framework, based on local discussion networks, allows the integration of structural information, while minimising user profiling, thus preserving their privacy.
Abstract:The proliferation of misinformation on social media platforms (SMPs) poses a significant danger to public health, social cohesion and ultimately democracy. Previous research has shown how social correction can be an effective way to curb misinformation, by engaging directly in a constructive dialogue with users who spread -- often in good faith -- misleading messages. Although professional fact-checkers are crucial to debunking viral claims, they usually do not engage in conversations on social media. Thereby, significant effort has been made to automate the use of fact-checker material in social correction; however, no previous work has tried to integrate it with the style and pragmatics that are commonly employed in social media communication. To fill this gap, we present VerMouth, the first large-scale dataset comprising roughly 12 thousand claim-response pairs (linked to debunking articles), accounting for both SMP-style and basic emotions, two factors which have a significant role in misinformation credibility and spreading. To collect this dataset we used a technique based on an author-reviewer pipeline, which efficiently combines LLMs and human annotators to obtain high-quality data. We also provide comprehensive experiments showing how models trained on our proposed dataset have significant improvements in terms of output quality and generalization capabilities.
Abstract:Providing dialogue agents with a profile representation can improve their consistency and coherence, leading to better conversations. However, current profile-based dialogue datasets for training such agents contain either explicit profile representations that are simple and dialogue-specific, or implicit representations that are difficult to collect. In this work, we propose a unified framework in which we bring together both standard and more sophisticated profile representations by creating a new resource where each dialogue is aligned with all possible speaker representations such as communication style, biographies, and personality. This framework allows to test several baselines built using generative language models with several profile configurations. The automatic evaluation shows that profile-based models have better generalisation capabilities than models trained on dialogues only, both in-domain and cross-domain settings. These results are consistent for fine-tuned models and instruction-based LLMs. Additionally, human evaluation demonstrates a clear preference for generations consistent with both profile and context. Finally, to account for possible privacy concerns, all experiments are done under two configurations: inter-character and intra-character. In the former, the LM stores the information about the character in its internal representation, while in the latter, the LM does not retain any personal information but uses it only at inference time.