Abstract:Neural machine translation (NMT) systems amplify lexical biases present in their training data, leading to artificially impoverished language in output translations. These language-level characteristics render automatic translations different from text originally written in a language and human translations, which hinders their usefulness in for example creating evaluation datasets. Attempts to increase naturalness in NMT can fall short in terms of content preservation, where increased lexical diversity comes at the cost of translation accuracy. Inspired by the reinforcement learning from human feedback framework, we introduce a novel method that rewards both naturalness and content preservation. We experiment with multiple perspectives to produce more natural translations, aiming at reducing machine and human translationese. We evaluate our method on English-to-Dutch literary translation, and find that our best model produces translations that are lexically richer and exhibit more properties of human-written language, without loss in translation accuracy.
Abstract:Machine translations are found to be lexically poorer than human translations. The loss of lexical diversity through MT poses an issue in the automatic translation of literature, where it matters not only what is written, but also how it is written. Current methods for increasing lexical diversity in MT are rigid. Yet, as we demonstrate, the degree of lexical diversity can vary considerably across different novels. Thus, rather than aiming for the rigid increase of lexical diversity, we reframe the task as recovering what is lost in the machine translation process. We propose a novel approach that consists of reranking translation candidates with a classifier that distinguishes between original and translated text. We evaluate our approach on 31 English-to-Dutch book translations, and find that, for certain books, our approach retrieves lexical diversity scores that are close to human translation.
Abstract:Automatic methods for generating and gathering linguistic data have proven effective for fine-tuning Language Models (LMs) in languages less resourced than English. Still, while there has been emphasis on data quantity, less attention has been given to its quality. In this work, we investigate the impact of human intervention on machine-generated data when fine-tuning dialogical models. In particular, we study (1) whether post-edited dialogues exhibit higher perceived quality compared to the originals that were automatically generated; (2) whether fine-tuning with post-edited dialogues results in noticeable differences in the generated outputs; and (3) whether post-edited dialogues influence the outcomes when considering the parameter size of the LMs. To this end we created HED-IT, a large-scale dataset where machine-generated dialogues are paired with the version post-edited by humans. Using both the edited and unedited portions of HED-IT, we fine-tuned three different sizes of an LM. Results from both human and automatic evaluation show that the different quality of training data is clearly perceived and it has an impact also on the models trained on such data. Additionally, our findings indicate that larger models are less sensitive to data quality, whereas this has a crucial impact on smaller models. These results enhance our comprehension of the impact of human intervention on training data in the development of high-quality LMs.
Abstract:Large language models (LLMs) with Chain-of-thought (CoT) have recently emerged as a powerful technique for eliciting reasoning to improve various downstream tasks. As most research mainly focuses on English, with few explorations in a multilingual context, the question of how reliable this reasoning capability is in different languages is still open. To address it directly, we study multilingual reasoning consistency across multiple languages, using popular open-source LLMs. First, we compile the first large-scale multilingual math reasoning dataset, mCoT-MATH, covering eleven diverse languages. Then, we introduce multilingual CoT instruction tuning to boost reasoning capability across languages, thereby improving model consistency. While existing LLMs show substantial variation across the languages we consider, and especially low performance for lesser resourced languages, our 7B parameter model mCoT achieves impressive consistency across languages, and superior or comparable performance to close- and open-source models even of much larger sizes.
Abstract:Different ways of linguistically expressing the same real-world event can lead to different perceptions of what happened. Previous work has shown that different descriptions of gender-based violence (GBV) influence the reader's perception of who is to blame for the violence, possibly reinforcing stereotypes which see the victim as partly responsible, too. As a contribution to raise awareness on perspective-based writing, and to facilitate access to alternative perspectives, we introduce the novel task of automatically rewriting GBV descriptions as a means to alter the perceived level of responsibility on the perpetrator. We present a quasi-parallel dataset of sentences with low and high perceived responsibility levels for the perpetrator, and experiment with unsupervised (mBART-based), zero-shot and few-shot (GPT3-based) methods for rewriting sentences. We evaluate our models using a questionnaire study and a suite of automatic metrics.
Abstract:Pre-trained language models (PLMs) have achieved great success in NLP and have recently been used for tasks in computational semantics. However, these tasks do not fully benefit from PLMs since meaning representations are not explicitly included in the pre-training stage. We introduce multilingual pre-trained language-meaning models based on Discourse Representation Structures (DRSs), including meaning representations besides natural language texts in the same model, and design a new strategy to reduce the gap between the pre-training and fine-tuning objectives. Since DRSs are language neutral, cross-lingual transfer learning is adopted to further improve the performance of non-English tasks. Automatic evaluation results show that our approach achieves the best performance on both the multilingual DRS parsing and DRS-to-text generation tasks. Correlation analysis between automatic metrics and human judgements on the generation task further validates the effectiveness of our model. Human inspection reveals that out-of-vocabulary tokens are the main cause of erroneous results.
Abstract:Figures of speech help people express abstract concepts and evoke stronger emotions than literal expressions, thereby making texts more creative and engaging. Due to its pervasive and fundamental character, figurative language understanding has been addressed in Natural Language Processing, but it's highly understudied in a multilingual setting and when considering more than one figure of speech at the same time. To bridge this gap, we introduce multilingual multi-figurative language modelling, and provide a benchmark for sentence-level figurative language detection, covering three common figures of speech and seven languages. Specifically, we develop a framework for figurative language detection based on template-based prompt learning. In so doing, we unify multiple detection tasks that are interrelated across multiple figures of speech and languages, without requiring task- or language-specific modules. Experimental results show that our framework outperforms several strong baselines and may serve as a blueprint for the joint modelling of other interrelated tasks.
Abstract:We report our efforts in identifying a set of previous human evaluations in NLP that would be suitable for a coordinated study examining what makes human evaluations in NLP more/less reproducible. We present our results and findings, which include that just 13\% of papers had (i) sufficiently low barriers to reproduction, and (ii) enough obtainable information, to be considered for reproduction, and that all but one of the experiments we selected for reproduction was discovered to have flaws that made the meaningfulness of conducting a reproduction questionable. As a result, we had to change our coordinated study design from a reproduce approach to a standardise-then-reproduce-twice approach. Our overall (negative) finding that the great majority of human evaluations in NLP is not repeatable and/or not reproducible and/or too flawed to justify reproduction, paints a dire picture, but presents an opportunity for a rethink about how to design and report human evaluations in NLP.
Abstract:We investigate the potential of ChatGPT as a multidimensional evaluator for the task of \emph{Text Style Transfer}, alongside, and in comparison to, existing automatic metrics as well as human judgements. We focus on a zero-shot setting, i.e. prompting ChatGPT with specific task instructions, and test its performance on three commonly-used dimensions of text style transfer evaluation: style strength, content preservation, and fluency. We perform a comprehensive correlation analysis for two transfer directions (and overall) at different levels. Compared to existing automatic metrics, ChatGPT achieves competitive correlations with human judgments. These preliminary results are expected to provide a first glimpse into the role of large language models in the multidimensional evaluation of stylized text generation.
Abstract:Figurative language generation is the task of reformulating a given text in the desired figure of speech while still being faithful to the original context. We take the first step towards multi-figurative language modelling by providing a benchmark for the automatic generation of five common figurative forms in English. We train mFLAG employing a scheme for multi-figurative language pre-training on top of BART, and a mechanism for injecting the target figurative information into the encoder; this enables the generation of text with the target figurative form from another figurative form without parallel figurative-figurative sentence pairs. Our approach outperforms all strong baselines. We also offer some qualitative analysis and reflections on the relationship between the different figures of speech.