Abstract:Machine-learning based generation of process models from natural language text process descriptions provides a solution for the time-intensive and expensive process discovery phase. Many organizations have to carry out this phase, before they can utilize business process management and its benefits. Yet, research towards this is severely restrained by an apparent lack of large and high-quality datasets. This lack of data can be attributed to, among other things, an absence of proper tool assistance for dataset creation, resulting in high workloads and inferior data quality. We explore two assistance features to support dataset creation, a recommendation system for identifying process information in the text and visualization of the current state of already identified process information as a graphical business process model. A controlled user study with 31 participants shows that assisting dataset creators with recommendations lowers all aspects of workload, up to $-51.0\%$, and significantly improves annotation quality, up to $+38.9\%$. We make all data and code available to encourage further research on additional novel assistance strategies.
Abstract:Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios. Traditionally, BPS approaches employ a control-flow-first perspective by enriching a process model with simulation parameters. Although such approaches can mimic the behavior of centrally orchestrated processes, such as those supported by workflow systems, current control-flow-first approaches cannot faithfully capture the dynamics of real-world processes that involve distinct resource behavior and decentralized decision-making. Recognizing this issue, this paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log, modeling distinct resource behaviors and interaction patterns to simulate the underlying process. Our experiments show that AgentSimulator achieves state-of-the-art simulation accuracy with significantly lower computation times than existing approaches while providing high interpretability and adaptability to different types of process-execution scenarios.
Abstract:Over the past decade, extensive research efforts have been dedicated to the extraction of information from textual process descriptions. Despite the remarkable progress witnessed in natural language processing (NLP), information extraction within the Business Process Management domain remains predominantly reliant on rule-based systems and machine learning methodologies. Data scarcity has so far prevented the successful application of deep learning techniques. However, the rapid progress in generative large language models (LLMs) makes it possible to solve many NLP tasks with very high quality without the need for extensive data. Therefore, we systematically investigate the potential of LLMs for extracting information from textual process descriptions, targeting the detection of process elements such as activities and actors, and relations between them. Using a heuristic algorithm, we demonstrate the suitability of the extracted information for process model generation. Based on a novel prompting strategy, we show that LLMs are able to outperform state-of-the-art machine learning approaches with absolute performance improvements of up to 8\% $F_1$ score across three different datasets. We evaluate our prompting strategy on eight different LLMs, showing it is universally applicable, while also analyzing the impact of certain prompt parts on extraction quality. The number of example texts, the specificity of definitions, and the rigour of format instructions are identified as key for improving the accuracy of extracted information. Our code, prompts, and data are publicly available.
Abstract:The process mining community has recently recognized the potential of large language models (LLMs) for tackling various process mining tasks. Initial studies report the capability of LLMs to support process analysis and even, to some extent, that they are able to reason about how processes work. This latter property suggests that LLMs could also be used to tackle process mining tasks that benefit from an understanding of process behavior. Examples of such tasks include (semantic) anomaly detection and next activity prediction, which both involve considerations of the meaning of activities and their inter-relations. In this paper, we investigate the capabilities of LLMs to tackle such semantics-aware process mining tasks. Furthermore, whereas most works on the intersection of LLMs and process mining only focus on testing these models out of the box, we provide a more principled investigation of the utility of LLMs for process mining, including their ability to obtain process mining knowledge post-hoc by means of in-context learning and supervised fine-tuning. Concretely, we define three process mining tasks that benefit from an understanding of process semantics and provide extensive benchmarking datasets for each of them. Our evaluation experiments reveal that (1) LLMs fail to solve challenging process mining tasks out of the box and when provided only a handful of in-context examples, (2) but they yield strong performance when fine-tuned for these tasks, consistently surpassing smaller, encoder-based language models.
Abstract:We present PGTNet, an approach that transforms event logs into graph datasets and leverages graph-oriented data for training Process Graph Transformer Networks to predict the remaining time of business process instances. PGTNet consistently outperforms state-of-the-art deep learning approaches across a diverse range of 20 publicly available real-world event logs. Notably, our approach is most promising for highly complex processes, where existing deep learning approaches encounter difficulties stemming from their limited ability to learn control-flow relationships among process activities and capture long-range dependencies. PGTNet addresses these challenges, while also being able to consider multiple process perspectives during the learning process.
Abstract:The continued success of Large Language Models (LLMs) and other generative artificial intelligence approaches highlights the advantages that large information corpora can have over rigidly defined symbolic models, but also serves as a proof-point of the challenges that purely statistics-based approaches have in terms of safety and trustworthiness. As a framework for contextualizing the potential, as well as the limitations of LLMs and other foundation model-based technologies, we propose the concept of a Large Process Model (LPM) that combines the correlation power of LLMs with the analytical precision and reliability of knowledge-based systems and automated reasoning approaches. LPMs are envisioned to directly utilize the wealth of process management experience that experts have accumulated, as well as process performance data of organizations with diverse characteristics, e.g., regarding size, region, or industry. In this vision, the proposed LPM would allow organizations to receive context-specific (tailored) process and other business models, analytical deep-dives, and improvement recommendations. As such, they would allow to substantially decrease the time and effort required for business transformation, while also allowing for deeper, more impactful, and more actionable insights than previously possible. We argue that implementing an LPM is feasible, but also highlight limitations and research challenges that need to be solved to implement particular aspects of the LPM vision.
Abstract:Although there is a long tradition of work in NLP on extracting entities and relations from text, to date there exists little work on the acquisition of business processes from unstructured data such as textual corpora of process descriptions. With this work we aim at filling this gap and establishing the first steps towards bridging data-driven information extraction methodologies from Natural Language Processing and the model-based formalization that is aimed from Business Process Management. For this, we develop the first corpus of business process descriptions annotated with activities, gateways, actors and flow information. We present our new resource, including a detailed overview of the annotation schema and guidelines, as well as a variety of baselines to benchmark the difficulty and challenges of business process extraction from text.
Abstract:Privacy-preserving process mining enables the analysis of business processes using event logs, while giving guarantees on the protection of sensitive information on process stakeholders. To this end, existing approaches add noise to the results of queries that extract properties of an event log, such as the frequency distribution of trace variants, for analysis.Noise insertion neglects the semantics of the process, though, and may generate traces not present in the original log. This is problematic. It lowers the utility of the published data and makes noise easily identifiable, as some traces will violate well-known semantic constraints.In this paper, we therefore argue for privacy preservation that incorporates a process semantics. For common trace-variant queries, we show how, based on the exponential mechanism, semantic constraints are incorporated to ensure differential privacy of the query result. Experiments demonstrate that our semantics-aware anonymization yields event logs of significantly higher utility than existing approaches.
Abstract:To enable process analysis based on an event log without compromising the privacy of individuals involved in process execution, a log may be anonymized. Such anonymization strives to transform a log so that it satisfies provable privacy guarantees, while largely maintaining its utility for process analysis. Existing techniques perform anonymization using simple, syntactic measures to identify suitable transformation operations. This way, the semantics of the activities referenced by the events in a trace are neglected, potentially leading to transformations in which events of unrelated activities are merged. To avoid this and incorporate the semantics of activities during anonymization, we propose to instead incorporate a distance measure based on feature learning. Specifically, we show how embeddings of events enable the definition of a distance measure for traces to guide event log anonymization. Our experiments with real-world data indicate that anonymization using this measure, compared to a syntactic one, yields logs that are closer to the original log in various dimensions and, hence, have higher utility for process analysis.
Abstract:Process mining focuses on the analysis of recorded event data in order to gain insights about the true execution of business processes. While foundational process mining techniques treat such data as sequences of abstract events, more advanced techniques depend on the availability of specific kinds of information, such as resources in organizational mining and business objects in artifact-centric analysis. However, this information is generally not readily available, but rather associated with events in an ad hoc manner, often even as part of unstructured textual attributes. Given the size and complexity of event logs, this calls for automated support to extract such process information and, thereby, enable advanced process mining techniques. In this paper, we present an approach that achieves this through so-called semantic role labeling of event data. We combine the analysis of textual attribute values, based on a state-of-the-art language model, with a novel attribute classification technique. In this manner, our approach extracts information about up to eight semantic roles per event. We demonstrate the approach's efficacy through a quantitative evaluation using a broad range of event logs and demonstrate the usefulness of the extracted information in a case study.