Abstract:Predicting Bitcoin price remains a challenging problem due to the high volatility and complex non-linear dynamics of cryptocurrency markets. Traditional time-series models, such as ARIMA and GARCH, and recurrent neural networks, like LSTMs, have been widely applied to this task but struggle to capture the regime shifts and long-range dependencies inherent in the data. In this work, we propose CryptoMamba, a novel Mamba-based State Space Model (SSM) architecture designed to effectively capture long-range dependencies in financial time-series data. Our experiments show that CryptoMamba not only provides more accurate predictions but also offers enhanced generalizability across different market conditions, surpassing the limitations of previous models. Coupled with trading algorithms for real-world scenarios, CryptoMamba demonstrates its practical utility by translating accurate forecasts into financial outcomes. Our findings signal a huge advantage for SSMs in stock and cryptocurrency price forecasting tasks.
Abstract:We present Fox-1, a series of small language models (SLMs) consisting of Fox-1-1.6B and Fox-1-1.6B-Instruct-v0.1. These models are pre-trained on 3 trillion tokens of web-scraped document data and fine-tuned with 5 billion tokens of instruction-following and multi-turn conversation data. Aiming to improve the pre-training efficiency, Fox-1-1.6B model introduces a novel 3-stage data curriculum across all the training data with 2K-8K sequence length. In architecture design, Fox-1 features a deeper layer structure, an expanded vocabulary, and utilizes Grouped Query Attention (GQA), offering a performant and efficient architecture compared to other SLMs. Fox-1 achieves better or on-par performance in various benchmarks compared to StableLM-2-1.6B, Gemma-2B, Qwen1.5-1.8B, and OpenELM1.1B, with competitive inference speed and throughput. The model weights have been released under the Apache 2.0 license, where we aim to promote the democratization of LLMs and make them fully accessible to the whole open-source community.
Abstract:The rapid advancement of Large Language Models (LLMs) has led to their increased integration into mobile devices for personalized assistance, which enables LLMs to call external API functions to enhance their performance. However, challenges such as data scarcity, ineffective question formatting, and catastrophic forgetting hinder the development of on-device LLM agents. To tackle these issues, we propose Alopex, a framework that enables precise on-device function calls using the Fox LLM. Alopex introduces a logic-based method for generating high-quality training data and a novel ``description-question-output'' format for fine-tuning, reducing risks of function information leakage. Additionally, a data mixing strategy is used to mitigate catastrophic forgetting, combining function call data with textbook datasets to enhance performance in various tasks. Experimental results show that Alopex improves function call accuracy and significantly reduces catastrophic forgetting, providing a robust solution for integrating function call capabilities into LLMs without manual intervention.
Abstract:Multimodal Federated Learning frequently encounters challenges of client modality heterogeneity, leading to undesired performances for secondary modality in multimodal learning. It is particularly prevalent in audiovisual learning, with audio is often assumed to be the weaker modality in recognition tasks. To address this challenge, we introduce ModalityMirror to improve audio model performance by leveraging knowledge distillation from an audiovisual federated learning model. ModalityMirror involves two phases: a modality-wise FL stage to aggregate uni-modal encoders; and a federated knowledge distillation stage on multi-modality clients to train an unimodal student model. Our results demonstrate that ModalityMirror significantly improves the audio classification compared to the state-of-the-art FL methods such as Harmony, particularly in audiovisual FL facing video missing. Our approach unlocks the potential for exploiting the diverse modality spectrum inherent in multi-modal FL.
Abstract:With the rapid growth of Large Language Models (LLMs) across various domains, numerous new LLMs have emerged, each possessing domain-specific expertise. This proliferation has highlighted the need for quick, high-quality, and cost-effective LLM query response methods. Yet, no single LLM exists to efficiently balance this trilemma. Some models are powerful but extremely costly, while others are fast and inexpensive but qualitatively inferior. To address this challenge, we present PolyRouter, a non-monolithic LLM querying system that seamlessly integrates various LLM experts into a single query interface and dynamically routes incoming queries to the most high-performant expert based on query's requirements. Through extensive experiments, we demonstrate that when compared to standalone expert models, PolyRouter improves query efficiency by up to 40%, and leads to significant cost reductions of up to 30%, while maintaining or enhancing model performance by up to 10%.
Abstract:Large language models (LLMs) have surged in popularity and are extensively used in commercial applications, where the efficiency of model serving is crucial for the user experience. Most current research focuses on optimizing individual sub-procedures, e.g. local inference and communication, however, there is no comprehensive framework that provides a holistic system view for optimizing LLM serving in an end-to-end manner. In this work, we conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems. Our analysis reveals that a comprehensive LLM serving endpoint must address a series of efficiency bottlenecks that extend beyond LLM inference. We then propose ScaleLLM, an optimized system for resource-efficient LLM serving. Our extensive experiments reveal that with 64 concurrent requests, ScaleLLM achieves a 4.3x speed up over vLLM and outperforms state-of-the-arts with 1.5x higher throughput.
Abstract:Analog and radio-frequency circuit design requires extensive exploration of both circuit topology and parameters to meet specific design criteria like power consumption and bandwidth. Designers must review state-of-the-art topology configurations in the literature and sweep various circuit parameters within each configuration. This design process is highly specialized and time-intensive, particularly as the number of circuit parameters increases and the circuit becomes more complex. Prior research has explored the potential of machine learning to enhance circuit design procedures. However, these studies primarily focus on simple circuits, overlooking the more practical and complex analog and radio-frequency systems. A major obstacle for bearing the power of machine learning in circuit design is the availability of a generic and diverse dataset, along with robust metrics, which are essential for thoroughly evaluating and improving machine learning algorithms in the analog and radio-frequency circuit domain. We present AICircuit, a comprehensive multi-level dataset and benchmark for developing and evaluating ML algorithms in analog and radio-frequency circuit design. AICircuit comprises seven commonly used basic circuits and two complex wireless transceiver systems composed of multiple circuit blocks, encompassing a wide array of design scenarios encountered in real-world applications. We extensively evaluate various ML algorithms on the dataset, revealing the potential of ML algorithms in learning the mapping from the design specifications to the desired circuit parameters.
Abstract:Continual self-supervised learning (CSSL) learns a series of tasks sequentially on the unlabeled data. Two main challenges of continual learning are catastrophic forgetting and task confusion. While CSSL problem has been studied to address the catastrophic forgetting challenge, little work has been done to address the task confusion aspect. In this work, we show through extensive experiments that self-supervised learning (SSL) can make CSSL more susceptible to the task confusion problem, particularly in less diverse settings of class incremental learning because different classes belonging to different tasks are not trained concurrently. Motivated by this challenge, we present a novel cross-model feature Mixup (CroMo-Mixup) framework that addresses this issue through two key components: 1) Cross-Task data Mixup, which mixes samples across tasks to enhance negative sample diversity; and 2) Cross-Model feature Mixup, which learns similarities between embeddings obtained from current and old models of the mixed sample and the original images, facilitating cross-task class contrast learning and old knowledge retrieval. We evaluate the effectiveness of CroMo-Mixup to improve both Task-ID prediction and average linear accuracy across all tasks on three datasets, CIFAR10, CIFAR100, and tinyImageNet under different class-incremental learning settings. We validate the compatibility of CroMo-Mixup on four state-of-the-art SSL objectives. Code is available at \url{https://github.com/ErumMushtaq/CroMo-Mixup}.
Abstract:In Federated Learning (FL), clients may have weak devices that cannot train the full model or even hold it in their memory space. To implement large-scale FL applications, thus, it is crucial to develop a distributed learning method that enables the participation of such weak clients. We propose EmbracingFL, a general FL framework that allows all available clients to join the distributed training regardless of their system resource capacity. The framework is built upon a novel form of partial model training method in which each client trains as many consecutive output-side layers as its system resources allow. Our study demonstrates that EmbracingFL encourages each layer to have similar data representations across clients, improving FL efficiency. The proposed partial model training method guarantees convergence to a neighbor of stationary points for non-convex and smooth problems. We evaluate the efficacy of EmbracingFL under a variety of settings with a mixed number of strong, moderate (~40% memory), and weak (~15% memory) clients, datasets (CIFAR-10, FEMNIST, and IMDB), and models (ResNet20, CNN, and LSTM). Our empirical study shows that EmbracingFL consistently achieves high accuracy as like all clients are strong, outperforming the state-of-the-art width reduction methods (i.e. HeteroFL and FjORD).
Abstract:In this work, we introduce the Learnable Response Scoring Function (LARS) for Uncertainty Estimation (UE) in generative Large Language Models (LLMs). Current scoring functions for probability-based UE, such as length-normalized scoring and semantic contribution-based weighting, are designed to solve specific aspects of the problem but exhibit limitations, including the inability to handle biased probabilities and under-performance in low-resource languages like Turkish. To address these issues, we propose LARS, a scoring function that leverages supervised data to capture complex dependencies between tokens and probabilities, thereby producing more reliable and calibrated response scores in computing the uncertainty of generations. Our extensive experiments across multiple datasets show that LARS substantially outperforms existing scoring functions considering various probability-based UE methods.