Abstract:Efficient preference optimization algorithms such as Direct Preference Optimization (DPO) have become a popular approach in aligning large language models (LLMs) with human preferences. These algorithms implicitly treat the LLM as a reward model, and focus on training it to correct misranked preference pairs. However, recent work~\citep{chen2024preference} empirically finds that DPO training \textit{rarely improves these misranked preference pairs}, despite its gradient emphasizing on these cases. We introduce FocalPO, a DPO variant that instead \textit{down-weighs} misranked preference pairs and prioritizes enhancing the model's understanding of pairs that it can already rank correctly. Inspired by Focal Loss used in vision tasks, FocalPO achieves this by adding a modulating factor to dynamically scale DPO loss. Our experiment demonstrates that FocalPO surpasses DPO and its variants on popular benchmarks like Alpaca Eval 2.0 using Mistral-Base-7B and Llama-3-Instruct-8B. Additionally, we empirically reveals how FocalPO affects training on correct and incorrect sample groups, further underscoring its effectiveness.
Abstract:Current multimodal large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding. The limitation is largely attributable to inadequate perception of geometric primitives during image-level contrastive pre-training (e.g., CLIP). While recent efforts to improve math MLLMs have focused on scaling up mathematical visual instruction datasets and employing stronger LLM backbones, they often overlook persistent errors in visual recognition. In this paper, we systematically evaluate the visual grounding capabilities of state-of-the-art MLLMs and reveal a significant negative correlation between visual grounding accuracy and problem-solving performance, underscoring the critical role of fine-grained visual understanding. Notably, advanced models like GPT-4o exhibit a 70% error rate when identifying geometric entities, highlighting that this remains a key bottleneck in visual mathematical reasoning. To address this, we propose a novel approach, SVE-Math (Selective Vision-Enhanced Mathematical MLLM), featuring a geometric-grounded vision encoder and a feature router that dynamically adjusts the contribution of hierarchical visual feature maps. Our model recognizes accurate visual primitives and generates precise visual prompts tailored to the language model's reasoning needs. In experiments, SVE-Math-Qwen2.5-7B outperforms other 7B models by 15% on MathVerse and is compatible with GPT-4V on MathVista. Despite being trained on smaller datasets, SVE-Math-7B achieves competitive performance on GeoQA, rivaling models trained on significantly larger datasets. Our findings emphasize the importance of incorporating fine-grained visual understanding into MLLMs and provide a promising direction for future research.
Abstract:Text-to-image (T2I) models have become widespread, but their limited safety guardrails expose end users to harmful content and potentially allow for model misuse. Current safety measures are typically limited to text-based filtering or concept removal strategies, able to remove just a few concepts from the model's generative capabilities. In this work, we introduce SafetyDPO, a method for safety alignment of T2I models through Direct Preference Optimization (DPO). We enable the application of DPO for safety purposes in T2I models by synthetically generating a dataset of harmful and safe image-text pairs, which we call CoProV2. Using a custom DPO strategy and this dataset, we train safety experts, in the form of low-rank adaptation (LoRA) matrices, able to guide the generation process away from specific safety-related concepts. Then, we merge the experts into a single LoRA using a novel merging strategy for optimal scaling performance. This expert-based approach enables scalability, allowing us to remove 7 times more harmful concepts from T2I models compared to baselines. SafetyDPO consistently outperforms the state-of-the-art on many benchmarks and establishes new practices for safety alignment in T2I networks. Code and data will be shared at https://safetydpo.github.io/.
Abstract:Current image generation models can effortlessly produce high-quality, highly realistic images, but this also increases the risk of misuse. In various Text-to-Image or Image-to-Image tasks, attackers can generate a series of images containing inappropriate content by simply editing the language modality input. Currently, to prevent this security threat, the various guard or defense methods that are proposed also focus on defending the language modality. However, in practical applications, threats in the visual modality, particularly in tasks involving the editing of real-world images, pose greater security risks as they can easily infringe upon the rights of the image owner. Therefore, this paper uses a method named typographic attack to reveal that various image generation models also commonly face threats in the vision modality. Furthermore, we also evaluate the defense performance of various existing methods when facing threats in the vision modality and uncover their ineffectiveness. Finally, we propose the Vision Modal Threats in Image Generation Models (VMT-IGMs) dataset, which would serve as a baseline for evaluating the vision modality vulnerability of various image generation models.
Abstract:Large Audio-Language Models (LALMs) have unclocked audio dialogue capabilities, where audio dialogues are a direct exchange of spoken language between LALMs and humans. Recent advances, such as GPT-4o, have enabled LALMs in back-and-forth audio dialogues with humans. This progression not only underscores the potential of LALMs but also broadens their applicability across a wide range of practical scenarios supported by audio dialogues. However, given these advancements, a comprehensive benchmark to evaluate the performance of LALMs in the open-ended audio dialogue understanding remains absent currently. To address this gap, we propose an Audio Dialogue Understanding Benchmark (ADU-Bench), which consists of 4 benchmark datasets. They assess the open-ended audio dialogue ability for LALMs in 3 general scenarios, 12 skills, 9 multilingual languages, and 4 categories of ambiguity handling. Notably, we firstly propose the evaluation of ambiguity handling in audio dialogues that expresses different intentions beyond the same literal meaning of sentences, e.g., "Really!?" with different intonations. In summary, ADU-Bench includes over 20,000 open-ended audio dialogues for the assessment of LALMs. Through extensive experiments conducted on 13 LALMs, our analysis reveals that there is still considerable room for improvement in the audio dialogue understanding abilities of existing LALMs. In particular, they struggle with mathematical symbols and formulas, understanding human behavior such as roleplay, comprehending multiple languages, and handling audio dialogue ambiguities from different phonetic elements, such as intonations, pause positions, and homophones.
Abstract:The security risks of AI-driven video editing have garnered significant attention. Although recent studies indicate that adding perturbations to images can protect them from malicious edits, directly applying image-based methods to perturb each frame in a video becomes ineffective, as video editing techniques leverage the consistency of inter-frame information to restore individually perturbed content. To address this challenge, we leverage the temporal consistency of video content to propose a straightforward and efficient, yet highly effective and broadly applicable approach, Universal Video Consistency Guard (UVCG). UVCG embeds the content of another video(target video) within a protected video by introducing continuous, imperceptible perturbations which has the ability to force the encoder of editing models to map continuous inputs to misaligned continuous outputs, thereby inhibiting the generation of videos consistent with the intended textual prompts. Additionally leveraging similarity in perturbations between adjacent frames, we improve the computational efficiency of perturbation generation by employing a perturbation-reuse strategy. We applied UVCG across various versions of Latent Diffusion Models (LDM) and assessed its effectiveness and generalizability across multiple LDM-based editing pipelines. The results confirm the effectiveness, transferability, and efficiency of our approach in safeguarding video content from unauthorized modifications.
Abstract:Large language models (LLMs) excel at retrieving information from lengthy text, but their vision-language counterparts (VLMs) face difficulties with hour-long videos, especially for temporal grounding. Specifically, these VLMs are constrained by frame limitations, often losing essential temporal details needed for accurate event localization in extended video content. We propose ReVisionLLM, a recursive vision-language model designed to locate events in hour-long videos. Inspired by human search strategies, our model initially targets broad segments of interest, progressively revising its focus to pinpoint exact temporal boundaries. Our model can seamlessly handle videos of vastly different lengths, from minutes to hours. We also introduce a hierarchical training strategy that starts with short clips to capture distinct events and progressively extends to longer videos. To our knowledge, ReVisionLLM is the first VLM capable of temporal grounding in hour-long videos, outperforming previous state-of-the-art methods across multiple datasets by a significant margin (+2.6% R1@0.1 on MAD). The code is available at https://github.com/Tanveer81/ReVisionLLM.
Abstract:One-Shot Federated Learning (OSFL), a special decentralized machine learning paradigm, has recently gained significant attention. OSFL requires only a single round of client data or model upload, which reduces communication costs and mitigates privacy threats compared to traditional FL. Despite these promising prospects, existing methods face challenges due to client data heterogeneity and limited data quantity when applied to real-world OSFL systems. Recently, Latent Diffusion Models (LDM) have shown remarkable advancements in synthesizing high-quality images through pretraining on large-scale datasets, thereby presenting a potential solution to overcome these issues. However, directly applying pretrained LDM to heterogeneous OSFL results in significant distribution shifts in synthetic data, leading to performance degradation in classification models trained on such data. This issue is particularly pronounced in rare domains, such as medical imaging, which are underrepresented in LDM's pretraining data. To address this challenge, we propose Federated Bi-Level Personalization (FedBiP), which personalizes the pretrained LDM at both instance-level and concept-level. Hereby, FedBiP synthesizes images following the client's local data distribution without compromising the privacy regulations. FedBiP is also the first approach to simultaneously address feature space heterogeneity and client data scarcity in OSFL. Our method is validated through extensive experiments on three OSFL benchmarks with feature space heterogeneity, as well as on challenging medical and satellite image datasets with label heterogeneity. The results demonstrate the effectiveness of FedBiP, which substantially outperforms other OSFL methods.
Abstract:Question decomposition has emerged as an effective strategy for prompting Large Language Models (LLMs) to answer complex questions. However, while existing methods primarily focus on unimodal language models, the question decomposition capability of Multimodal Large Language Models (MLLMs) has yet to be explored. To this end, this paper explores visual question decomposition on MLLMs. Specifically, we introduce a systematic evaluation framework including a dataset and several evaluation criteria to assess the quality of the decomposed sub-questions, revealing that existing MLLMs struggle to produce high-quality sub-questions. To address this limitation, we propose a specific finetuning dataset, DecoVQA+, for enhancing the model's question decomposition capability. Aiming at enabling models to perform appropriate selective decomposition, we propose an efficient finetuning pipeline. The finetuning pipeline consists of our proposed dataset and a training objective for selective decomposition. Finetuned MLLMs demonstrate significant improvements in the quality of sub-questions and the policy of selective question decomposition. Additionally, the models also achieve higher accuracy with selective decomposition on VQA benchmark datasets.
Abstract:Diffusion models have recently achieved remarkable advancements in terms of image quality and fidelity to textual prompts. Concurrently, the safety of such generative models has become an area of growing concern. This work introduces a novel type of jailbreak, which triggers T2I models to generate the image with visual text, where the image and the text, although considered to be safe in isolation, combine to form unsafe content. To systematically explore this phenomenon, we propose a dataset to evaluate the current diffusion-based text-to-image (T2I) models under such jailbreak. We benchmark nine representative T2I models, including two close-source commercial models. Experimental results reveal a concerning tendency to produce unsafe content: all tested models suffer from such type of jailbreak, with rates of unsafe generation ranging from 8\% to 74\%. In real-world scenarios, various filters such as keyword blocklists, customized prompt filters, and NSFW image filters, are commonly employed to mitigate these risks. We evaluate the effectiveness of such filters against our jailbreak and found that, while current classifiers may be effective for single modality detection, they fail to work against our jailbreak. Our work provides a foundation for further development towards more secure and reliable T2I models.