Abstract:Dataset distillation (DD) aims to minimize the time and memory consumption needed for training deep neural networks on large datasets, by creating a smaller synthetic dataset that has similar performance to that of the full real dataset. However, current dataset distillation methods often result in synthetic datasets that are excessively difficult for networks to learn from, due to the compression of a substantial amount of information from the original data through metrics measuring feature similarity, e,g., distribution matching (DM). In this work, we introduce conditional mutual information (CMI) to assess the class-aware complexity of a dataset and propose a novel method by minimizing CMI. Specifically, we minimize the distillation loss while constraining the class-aware complexity of the synthetic dataset by minimizing its empirical CMI from the feature space of pre-trained networks, simultaneously. Conducting on a thorough set of experiments, we show that our method can serve as a general regularization method to existing DD methods and improve the performance and training efficiency.
Abstract:Dataset distillation offers an efficient way to reduce memory and computational costs by optimizing a smaller dataset with performance comparable to the full-scale original. However, for large datasets and complex deep networks (e.g., ImageNet-1K with ResNet-101), the extensive optimization space limits performance, reducing its practicality. Recent approaches employ pre-trained diffusion models to generate informative images directly, avoiding pixel-level optimization and achieving notable results. However, these methods often face challenges due to distribution shifts between pre-trained models and target datasets, along with the need for multiple distillation steps across varying settings. To address these issues, we propose a novel framework orthogonal to existing diffusion-based distillation methods, leveraging diffusion models for selection rather than generation. Our method starts by predicting noise generated by the diffusion model based on input images and text prompts (with or without label text), then calculates the corresponding loss for each pair. With the loss differences, we identify distinctive regions of the original images. Additionally, we perform intra-class clustering and ranking on selected patches to maintain diversity constraints. This streamlined framework enables a single-step distillation process, and extensive experiments demonstrate that our approach outperforms state-of-the-art methods across various metrics.
Abstract:Current Semi-Supervised Object Detection (SSOD) methods enhance detector performance by leveraging large amounts of unlabeled data, assuming that both labeled and unlabeled data share the same label space. However, in open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes. Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes. To alleviate this issue, we propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector). Specifically, we introduce a feature-level clustering method using contrastive loss to clarify vector boundaries in the feature space and highlight class differences. Additionally, by optimizing the logits-level uncertainty classification loss, the model enhances its ability to effectively distinguish between ID and OOD classes. Extensive experiments demonstrate that our method achieves state-of-the-art performance compared to existing methods.
Abstract:Dataset distillation is an emerging dataset reduction method, which condenses large-scale datasets while maintaining task accuracy. Current methods have integrated parameterization techniques to boost synthetic dataset performance by shifting the optimization space from pixel to another informative feature domain. However, they limit themselves to a fixed optimization space for distillation, neglecting the diverse guidance across different informative latent spaces. To overcome this limitation, we propose a novel parameterization method dubbed Hierarchical Generative Latent Distillation (H-GLaD), to systematically explore hierarchical layers within the generative adversarial networks (GANs). This allows us to progressively span from the initial latent space to the final pixel space. In addition, we introduce a novel class-relevant feature distance metric to alleviate the computational burden associated with synthetic dataset evaluation, bridging the gap between synthetic and original datasets. Experimental results demonstrate that the proposed H-GLaD achieves a significant improvement in both same-architecture and cross-architecture performance with equivalent time consumption.