Shammie
Abstract:Heterogeneous graph neural networks have recently gained attention for long document summarization, modeling the extraction as a node classification task. Although effective, these models often require external tools or additional machine learning models to define graph components, producing highly complex and less intuitive structures. We present GraphLSS, a heterogeneous graph construction for long document extractive summarization, incorporating Lexical, Structural, and Semantic features. It defines two levels of information (words and sentences) and four types of edges (sentence semantic similarity, sentence occurrence order, word in sentence, and word semantic similarity) without any need for auxiliary learning models. Experiments on two benchmark datasets show that GraphLSS is competitive with top-performing graph-based methods, outperforming recent non-graph models. We release our code on GitHub.
Abstract:Annotating large datasets can be challenging. However, crowd-sourcing is often expensive and can lack quality, especially for non-trivial tasks. We propose a method of using LLMs as few-shot learners for annotating data in a complex natural language task where we learn a standalone model to predict usage options for products from customer reviews. We also propose a new evaluation metric for this scenario, HAMS4, that can be used to compare a set of strings with multiple reference sets. Learning a custom model offers individual control over energy efficiency and privacy measures compared to using the LLM directly for the sequence-to-sequence task. We compare this data annotation approach with other traditional methods and demonstrate how LLMs can enable considerable cost savings. We find that the quality of the resulting data exceeds the level attained by third-party vendor services and that GPT-4-generated labels even reach the level of domain experts. We make the code and generated labels publicly available.
Abstract:Scalable Vector Graphics (SVG) is a popular format on the web and in the design industry. However, despite the great strides made in generative modeling, SVG has remained underexplored due to the discrete and complex nature of such data. We introduce GRIMOIRE, a text-guided SVG generative model that is comprised of two modules: A Visual Shape Quantizer (VSQ) learns to map raster images onto a discrete codebook by reconstructing them as vector shapes, and an Auto-Regressive Transformer (ART) models the joint probability distribution over shape tokens, positions and textual descriptions, allowing us to generate vector graphics from natural language. Unlike existing models that require direct supervision from SVG data, GRIMOIRE learns shape image patches using only raster image supervision which opens up vector generative modeling to significantly more data. We demonstrate the effectiveness of our method by fitting GRIMOIRE for closed filled shapes on the MNIST and for outline strokes on icon and font data, surpassing previous image-supervised methods in generative quality and vector-supervised approach in flexibility.
Abstract:With the proliferation of Large Language Models (LLMs) in diverse domains, there is a particular need for unified evaluation standards in clinical medical scenarios, where models need to be examined very thoroughly. We present CliMedBench, a comprehensive benchmark with 14 expert-guided core clinical scenarios specifically designed to assess the medical ability of LLMs across 7 pivot dimensions. It comprises 33,735 questions derived from real-world medical reports of top-tier tertiary hospitals and authentic examination exercises. The reliability of this benchmark has been confirmed in several ways. Subsequent experiments with existing LLMs have led to the following findings: (i) Chinese medical LLMs underperform on this benchmark, especially where medical reasoning and factual consistency are vital, underscoring the need for advances in clinical knowledge and diagnostic accuracy. (ii) Several general-domain LLMs demonstrate substantial potential in medical clinics, while the limited input capacity of many medical LLMs hinders their practical use. These findings reveal both the strengths and limitations of LLMs in clinical scenarios and offer critical insights for medical research.
Abstract:We investigate continued pretraining of LLMs for language adaptation on a tight academic budget: a setting in which only a few GPUs can be used in parallel, for a heavily constrained duration. We focus on adapting Mistral-7B to German or Arabic and evaluate several techniques to improve efficiency and effectiveness in this setting. Our German models adapted on this tight compute budget underperform compared to the base Mistral-7B, while our Arabic models outperform several baselines, showing that for sufficiently well-represented languages, continued pretraining for specialization is not always helpful. Our main findings focus on training precision and tokenizer swapping. Our results show that pure bfloat16 training is a viable alternative to mixed-precision training, while being much faster when only using a few GPUs. Swapping the tokenizer for a specialized one yields more efficient tokenization and is competitive with the original tokenizer, which already contains some German tokens, but did not significantly increase performance for German. Code and model weights are available at on GitHub.
Abstract:Contrastive Language--Image Pre-training (CLIP) has manifested remarkable improvements in zero-shot classification and cross-modal vision-language tasks. Yet, from a geometrical point of view, the CLIP embedding space has been found to have a pronounced modality gap. This gap renders the embedding space overly sparse and disconnected, with different modalities being densely distributed in distinct subregions of the hypersphere. In this work, we aim at answering two main questions: 1. Does sharing the parameter space between the multi-modal encoders reduce the modality gap? 2. Can the gap be mitigated by pushing apart the uni-modal embeddings via intra-modality separation? We design AlignCLIP, in order to answer these questions and show that answers to both questions are positive. Through extensive experiments, we show that AlignCLIP achieves noticeable enhancements in the cross-modal alignment of the embeddings, and thereby, reduces the modality gap, while maintaining the performance across several downstream evaluations, such as zero-shot image classification, zero-shot multi-modal retrieval and zero-shot semantic text similarity.
Abstract:Why do some streets attract more social activities than others? Is it due to street design, or do land use patterns in neighborhoods create opportunities for businesses where people gather? These questions have intrigued urban sociologists, designers, and planners for decades. Yet, most research in this area has remained limited in scale, lacking a comprehensive perspective on the various factors influencing social interactions in urban settings. Exploring these issues requires fine-level data on the frequency and variety of social interactions on urban street. Recent advances in computer vision and the emergence of the open-vocabulary detection models offer a unique opportunity to address this long-standing issue on a scale that was previously impossible using traditional observational methods. In this paper, we propose a new benchmark dataset for Evaluating Localization of Social Activities (ELSA) in urban street images. ELSA draws on theoretical frameworks in urban sociology and design. While majority of action recognition datasets are collected in controlled settings, we use in-the-wild street-level imagery, where the size of social groups and the types of activities can vary significantly. ELSA includes 937 manually annotated images with more than 4,300 multi-labeled bounding boxes for individual and group activities, categorized into three primary groups: Condition, State, and Action. Each category contains various sub-categories, e.g., alone or group under Condition category, standing or walking, which fall under the State category, and talking or dining with regards to the Action category. ELSA is publicly available for the research community.
Abstract:Recent Large Language Models (LLMs) have shown the ability to generate content that is difficult or impossible to distinguish from human writing. We investigate the ability of differently-sized LLMs to replicate human writing style in short, creative texts in the domain of Showerthoughts, thoughts that may occur during mundane activities. We compare GPT-2 and GPT-Neo fine-tuned on Reddit data as well as GPT-3.5 invoked in a zero-shot manner, against human-authored texts. We measure human preference on the texts across the specific dimensions that account for the quality of creative, witty texts. Additionally, we compare the ability of humans versus fine-tuned RoBERTa classifiers to detect AI-generated texts. We conclude that human evaluators rate the generated texts slightly worse on average regarding their creative quality, but they are unable to reliably distinguish between human-written and AI-generated texts. We further provide a dataset for creative, witty text generation based on Reddit Showerthoughts posts.
Abstract:Writing commit messages is a tedious daily task for many software developers, and often remains neglected. Automating this task has the potential to save time while ensuring that messages are informative. A high-quality dataset and an objective benchmark are vital preconditions for solid research and evaluation towards this goal. We show that existing datasets exhibit various problems, such as the quality of the commit selection, small sample sizes, duplicates, privacy issues, and missing licenses for redistribution. This can lead to unusable models and skewed evaluations, where inferior models achieve higher evaluation scores due to biases in the data. We compile a new large-scale dataset, CommitBench, adopting best practices for dataset creation. We sample commits from diverse projects with licenses that permit redistribution and apply our filtering and dataset enhancements to improve the quality of generated commit messages. We use CommitBench to compare existing models and show that other approaches are outperformed by a Transformer model pretrained on source code. We hope to accelerate future research by publishing the source code( https://github.com/Maxscha/commitbench ).
Abstract:The field of deep generative modeling has grown rapidly and consistently over the years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains. In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with valuable insights for exploring fruitful research directions, thereby fostering the development of more robust and accessible generative AI solutions.