Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, China and Shanghai AI Laboratory, China
Abstract:Auscultation of internal body sounds is essential for diagnosing a range of health conditions, yet its effectiveness is often limited by clinicians' expertise and the acoustic constraints of human hearing, restricting its use across various clinical scenarios. To address these challenges, we introduce AuscultaBase, a foundational framework aimed at advancing body sound diagnostics through innovative data integration and contrastive learning techniques. Our contributions include the following: First, we compile AuscultaBase-Corpus, a large-scale, multi-source body sound database encompassing 11 datasets with 40,317 audio recordings and totaling 322.4 hours of heart, lung, and bowel sounds. Second, we develop AuscultaBase-Model, a foundational diagnostic model for body sounds, utilizing contrastive learning on the compiled corpus. Third, we establish AuscultaBase-Bench, a comprehensive benchmark containing 16 sub-tasks, assessing the performance of various open-source acoustic pre-trained models. Evaluation results indicate that our model outperforms all other open-source models in 12 out of 16 tasks, demonstrating the efficacy of our approach in advancing diagnostic capabilities for body sound analysis.
Abstract:The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction. Recent advancements approach this through sequence modeling, leveraging the Transformer architecture's scalability and the benefits of parameter sharing to exploit task similarities. However, variations in task content and complexity pose significant challenges in policy formulation, necessitating judicious parameter sharing and management of conflicting gradients for optimal policy performance. Furthermore, identifying the optimal parameter subspace for each task often necessitates prior knowledge of the task identifier during inference, limiting applicability in real-world scenarios with variable task content and unknown current tasks. In this work, we introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task. We formulate this as a bi-level optimization problem within a meta-learning framework, where the upper level learns masks to define the harmony subspace, while the inner level focuses on updating parameters to improve the overall performance of the unified policy. To eliminate the need for task identifiers, we further design a group-wise variant (G-HarmoDT) that clusters tasks into coherent groups based on gradient information, and utilizes a gating network to determine task identifiers during inference. Empirical evaluations across various benchmarks highlight the superiority of our approach, demonstrating its effectiveness in the multi-task context with specific improvements of 8% gain in task-provided settings, 5% in task-agnostic settings, and 10% in unseen settings.
Abstract:Large Language Models (LLMs) have shown promising potential in the medical domain, assisting with tasks like clinical note generation and patient communication. However, current LLMs are limited to text-based communication, hindering their ability to interact with diverse forms of information in clinical environments. Despite clinical agents succeeding in diverse signal interaction, they are oriented to a single clinical scenario and hence fail for broader applications. To evaluate clinical agents holistically, we propose ClinicalAgent Bench~(CAB), a comprehensive medical agent benchmark consisting of 18 tasks across five key realistic clinical dimensions. Building on this, we introduce ReflecTool, a novel framework that excels at utilizing domain-specific tools within two stages. The first optimization stage progressively enlarges a long-term memory by saving successful solving processes and tool-wise experience of agents in a tiny pre-defined training set. In the following inference stage, ReflecTool can search for supportive successful demonstrations from already built long-term memory to guide the tool selection strategy, and a verifier improves the tool usage according to the tool-wise experience with two verification methods--iterative refinement and candidate selection. Extensive experiments on ClinicalAgent Benchmark demonstrate that ReflecTool surpasses the pure LLMs with more than 10 points and the well-established agent-based methods with 3 points, highlighting its adaptability and effectiveness in solving complex clinical tasks.
Abstract:Post-training is essential for enabling large language models (LLMs) to follow human instructions. Inspired by the recent success of using LLMs to simulate human society, we leverage multi-agent simulation to automatically generate diverse text-based scenarios, capturing a wide range of real-world human needs. We propose MATRIX, a multi-agent simulator that creates realistic and scalable scenarios. Leveraging these outputs, we introduce a novel scenario-driven instruction generator MATRIX-Gen for controllable and highly realistic data synthesis. Extensive experiments demonstrate that our framework effectively generates both general and domain-specific data. Notably, on AlpacaEval 2 and Arena-Hard benchmarks, Llama-3-8B-Base, post-trained on datasets synthesized by MATRIX-Gen with just 20K instruction-response pairs, outperforms Meta's Llama-3-8B-Instruct model, which was trained on over 10M pairs; see our project at https://github.com/ShuoTang123/MATRIX-Gen.
Abstract:By leveraging massively distributed data, federated learning (FL) enables collaborative instruction tuning of large language models (LLMs) in a privacy-preserving way. While FL effectively expands the data quantity, the issue of data quality remains under-explored in the current literature on FL for LLMs. To address this gap, we propose a new framework of federated instruction tuning of LLMs with data quality control (FedDQC), which measures data quality to facilitate the subsequent filtering and hierarchical training processes. Our approach introduces an efficient metric to assess each client's instruction-response alignment (IRA), identifying potentially noisy data through single-shot inference. Low-IRA samples are potentially noisy and filtered to mitigate their negative impacts. To further utilize this IRA value, we propose a quality-aware hierarchical training paradigm, where LLM is progressively fine-tuned from high-IRA to low-IRA data, mirroring the easy-to-hard learning process. We conduct extensive experiments on 4 synthetic and a real-world dataset, and compare our method with baselines adapted from centralized setting. Results show that our method consistently and significantly improves the performance of LLMs trained on mix-quality data in FL.
Abstract:The success of large language models (LLMs) facilitate many parties to fine-tune LLMs on their own private data. However, this practice raises privacy concerns due to the memorization of LLMs. Existing solutions, such as utilizing synthetic data for substitution, struggle to simultaneously improve performance and preserve privacy. They either rely on a local model for generation, resulting in a performance decline, or take advantage of APIs, directly exposing the data to API servers. To address this issue, we propose KnowledgeSG, a novel client-server framework which enhances synthetic data quality and improves model performance while ensuring privacy. We achieve this by learning local knowledge from the private data with differential privacy (DP) and distilling professional knowledge from the server. Additionally, inspired by federated learning, we transmit models rather than data between the client and server to prevent privacy leakage. Extensive experiments in medical and financial domains demonstrate the effectiveness of KnowledgeSG. Our code is now publicly available at https://github.com/wwh0411/KnowledgeSG.
Abstract:With the proliferation of Large Language Models (LLMs) in diverse domains, there is a particular need for unified evaluation standards in clinical medical scenarios, where models need to be examined very thoroughly. We present CliMedBench, a comprehensive benchmark with 14 expert-guided core clinical scenarios specifically designed to assess the medical ability of LLMs across 7 pivot dimensions. It comprises 33,735 questions derived from real-world medical reports of top-tier tertiary hospitals and authentic examination exercises. The reliability of this benchmark has been confirmed in several ways. Subsequent experiments with existing LLMs have led to the following findings: (i) Chinese medical LLMs underperform on this benchmark, especially where medical reasoning and factual consistency are vital, underscoring the need for advances in clinical knowledge and diagnostic accuracy. (ii) Several general-domain LLMs demonstrate substantial potential in medical clinics, while the limited input capacity of many medical LLMs hinders their practical use. These findings reveal both the strengths and limitations of LLMs in clinical scenarios and offer critical insights for medical research.
Abstract:The widespread adoption of large-scale pre-training techniques has significantly advanced the development of medical foundation models, enabling them to serve as versatile tools across a broad range of medical tasks. However, despite their strong generalization capabilities, medical foundation models pre-trained on large-scale datasets tend to suffer from domain gaps between heterogeneous data, leading to suboptimal performance on specific tasks compared to specialist models, as evidenced by previous studies. In this paper, we explore a new perspective called "Knowledge Decomposition" to improve the performance on specific medical tasks, which deconstructs the foundation model into multiple lightweight expert models, each dedicated to a particular anatomical region, with the aim of enhancing specialization and simultaneously reducing resource consumption. To accomplish the above objective, we propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD), which explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution. The low-rank expert modules resolve gradient conflicts between heterogeneous data from different anatomical regions, providing strong specialization at lower costs. The efficient knowledge separation convolution significantly improves algorithm efficiency by achieving knowledge separation within a single forward propagation. Extensive experimental results on segmentation and classification tasks demonstrate that our decomposed models not only achieve state-of-the-art performance but also exhibit superior transferability on downstream tasks, even surpassing the original foundation models in task-specific evaluations. The code is available at here.
Abstract:Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale training datasets. However, existing tracking datasets are primarily focused on open-air scenarios, which greatly limits the development of object tracking in underwater environments. To address this issue, we take a step forward by proposing the first large-scale underwater camouflaged object tracking dataset, namely UW-COT. Based on the proposed dataset, this paper presents an experimental evaluation of several advanced visual object tracking methods and the latest advancements in image and video segmentation. Specifically, we compare the performance of the Segment Anything Model (SAM) and its updated version, SAM 2, in challenging underwater environments. Our findings highlight the improvements in SAM 2 over SAM, demonstrating its enhanced capability to handle the complexities of underwater camouflaged objects. Compared to current advanced visual object tracking methods, the latest video segmentation foundation model SAM 2 also exhibits significant advantages, providing valuable insights into the development of more effective tracking technologies for underwater scenarios. The dataset will be accessible at \color{magenta}{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
Abstract:Federated instruction tuning enables multiple clients to collaboratively fine-tune a shared large language model (LLM) that can follow humans' instructions without directly sharing raw data. However, existing literature impractically requires that all the clients readily hold instruction-tuning data (i.e., structured instruction-response pairs), which necessitates massive human annotations since clients' data is usually unstructured text instead. Addressing this, we propose a novel and flexible framework FedIT-U2S, which can automatically transform unstructured corpus into structured data for federated instruction tuning. FedIT-U2S consists two key steps: (1) few-shot instruction-tuning data generation, where each unstructured data piece together with several examples is combined to prompt an LLM in generating an instruction-response pair. To further enhance the flexibility, a retrieval-based example selection technique is proposed, where the examples are automatically selected based on the relatedness between the client's data piece and example pool, bypassing the need of determining examples in advance. (2) A typical federated instruction tuning process based on the generated data. Overall, FedIT-U2S can be applied to diverse scenarios as long as the client holds valuable text corpus, broadening the application scope of federated instruction tuning. We conduct a series of experiments on three domains (medicine, knowledge, and math), showing that our proposed FedIT-U2S can consistently and significantly brings improvement over the base LLM.