Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, China and Shanghai AI Laboratory, China
Abstract:This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0
Abstract:Medical language models (MLMs) have become pivotal in advancing medical natural language processing. However, prior models that rely on pre-training or supervised fine-tuning often exhibit low data efficiency and limited practicality in real-world clinical applications. While OpenAIs O1 highlights test-time scaling in mathematics, attempts to replicate this approach in medicine typically distill responses from GPT-series models to open-source models, focusing primarily on multiple-choice tasks. This strategy, though straightforward, neglects critical concerns like data privacy and realistic deployment in clinical settings. In this work, we present a deployable, small-scale medical language model, \mone, designed for long-chain reasoning in clinical tasks using a self-evolution paradigm. Starting with a seed dataset of around 8,000 instances spanning five domains and 16 datasets, we prompt a base policy model to perform Monte Carlo Tree Search (MCTS) to construct verifiable reasoning chains. Each reasoning step is assigned an evolution rollout value, allowing verified trajectories to train the policy model and the reward model. During inference, the policy model generates multiple responses, and the reward model selects the one with the highest reward score. Experiments on eleven evaluation datasets demonstrate that \mone outperforms prior open-source models by 2 points, with the addition of the reward model further boosting performance ($\sim$13 points), surpassing GPT-4o-mini. Code and data are available at \url{https://github.com/pixas/MedSSS}.
Abstract:Node attribute, a type of crucial information for graph analysis, may be partially or completely missing for certain nodes in real world applications. Restoring the missing attributes is expected to benefit downstream graph learning. Few attempts have been made on node attribute completion, but a novel framework called Structure-attribute Transformer (SAT) was recently proposed by using a decoupled scheme to leverage structures and attributes. SAT ignores the differences in contributing to the learning schedule and finding a practical way to model the different importance of nodes with observed attributes is challenging. This paper proposes a novel AcTive Sampling algorithm (ATS) to restore missing node attributes. The representativeness and uncertainty of each node's information are first measured based on graph structure, representation similarity and learning bias. To select nodes as train samples in the next optimization step, a weighting scheme controlled by Beta distribution is then introduced to linearly combine the two properties. Extensive experiments on four public benchmark datasets and two downstream tasks have shown the superiority of ATS in node attribute completion.
Abstract:Large language models (LLMs) hold promise for addressing healthcare challenges but often generate hallucinations due to limited integration of medical knowledge. Incorporating external medical knowledge is therefore critical, especially considering the breadth and complexity of medical content, which necessitates effective multi-source knowledge acquisition. We address this challenge by framing it as a source planning problem, where the task is to formulate context-appropriate queries tailored to the attributes of diverse knowledge sources. Existing approaches either overlook source planning or fail to achieve it effectively due to misalignment between the model's expectation of the sources and their actual content. To bridge this gap, we present MedOmniKB, a comprehensive repository comprising multigenre and multi-structured medical knowledge sources. Leveraging these sources, we propose the Source Planning Optimisation (SPO) method, which enhances multi-source utilisation through explicit planning optimisation. Our approach involves enabling an expert model to explore and evaluate potential plans while training a smaller model to learn source alignment using positive and negative planning samples. Experimental results demonstrate that our method substantially improves multi-source planning performance, enabling the optimised small model to achieve state-of-the-art results in leveraging diverse medical knowledge sources.
Abstract:Deep learning has enabled the development of highly robust foundation models for various pathological tasks across diverse diseases and patient cohorts. Among these models, vision-language pre-training, which leverages large-scale paired data to align pathology image and text embedding spaces, and provides a novel zero-shot paradigm for downstream tasks. However, existing models have been primarily data-driven and lack the incorporation of domain-specific knowledge, which limits their performance in cancer diagnosis, especially for rare tumor subtypes. To address this limitation, we establish a Knowledge-enhanced Pathology (KEEP) foundation model that harnesses disease knowledge to facilitate vision-language pre-training. Specifically, we first construct a disease knowledge graph (KG) that covers 11,454 human diseases with 139,143 disease attributes, including synonyms, definitions, and hypernym relations. We then systematically reorganize the millions of publicly available noisy pathology image-text pairs, into 143K well-structured semantic groups linked through the hierarchical relations of the disease KG. To derive more nuanced image and text representations, we propose a novel knowledge-enhanced vision-language pre-training approach that integrates disease knowledge into the alignment within hierarchical semantic groups instead of unstructured image-text pairs. Validated on 18 diverse benchmarks with more than 14,000 whole slide images (WSIs), KEEP achieves state-of-the-art performance in zero-shot cancer diagnostic tasks. Notably, for cancer detection, KEEP demonstrates an average sensitivity of 89.8% at a specificity of 95.0% across 7 cancer types. For cancer subtyping, KEEP achieves a median balanced accuracy of 0.456 in subtyping 30 rare brain cancers, indicating strong generalizability for diagnosing rare tumors.
Abstract:Neural Radiance Field (NeRF)-based volumetric video has revolutionized visual media by delivering photorealistic Free-Viewpoint Video (FVV) experiences that provide audiences with unprecedented immersion and interactivity. However, the substantial data volumes pose significant challenges for storage and transmission. Existing solutions typically optimize NeRF representation and compression independently or focus on a single fixed rate-distortion (RD) tradeoff. In this paper, we propose VRVVC, a novel end-to-end joint optimization variable-rate framework for volumetric video compression that achieves variable bitrates using a single model while maintaining superior RD performance. Specifically, VRVVC introduces a compact tri-plane implicit residual representation for inter-frame modeling of long-duration dynamic scenes, effectively reducing temporal redundancy. We further propose a variable-rate residual representation compression scheme that leverages a learnable quantization and a tiny MLP-based entropy model. This approach enables variable bitrates through the utilization of predefined Lagrange multipliers to manage the quantization error of all latent representations. Finally, we present an end-to-end progressive training strategy combined with a multi-rate-distortion loss function to optimize the entire framework. Extensive experiments demonstrate that VRVVC achieves a wide range of variable bitrates within a single model and surpasses the RD performance of existing methods across various datasets.
Abstract:Multimodal large language models (MLLMs) excel at multimodal perception and understanding, yet their tendency to generate hallucinated or inaccurate responses undermines their trustworthiness. Existing methods have largely overlooked the importance of refusal responses as a means of enhancing MLLMs reliability. To bridge this gap, we present the Information Boundary-aware Learning Framework (InBoL), a novel approach that empowers MLLMs to refuse to answer user queries when encountering insufficient information. To the best of our knowledge, InBoL is the first framework that systematically defines the conditions under which refusal is appropriate for MLLMs using the concept of information boundaries proposed in our paper. This framework introduces a comprehensive data generation pipeline and tailored training strategies to improve the model's ability to deliver appropriate refusal responses. To evaluate the trustworthiness of MLLMs, we further propose a user-centric alignment goal along with corresponding metrics. Experimental results demonstrate a significant improvement in refusal accuracy without noticeably compromising the model's helpfulness, establishing InBoL as a pivotal advancement in building more trustworthy MLLMs.
Abstract:Advancements in large language models (LLMs) have paved the way for LLM-based agent systems that offer enhanced accuracy and interpretability across various domains. Radiology, with its complex analytical requirements, is an ideal field for the application of these agents. This paper aims to investigate the pre-requisite question for building concrete radiology agents which is, `Can modern LLMs act as agent cores in radiology environments?' To investigate it, we introduce RadABench with three-fold contributions: First, we present RadABench-Data, a comprehensive synthetic evaluation dataset for LLM-based agents, generated from an extensive taxonomy encompassing 6 anatomies, 5 imaging modalities, 10 tool categories, and 11 radiology tasks. Second, we propose RadABench-EvalPlat, a novel evaluation platform for agents featuring a prompt-driven workflow and the capability to simulate a wide range of radiology toolsets. Third, we assess the performance of 7 leading LLMs on our benchmark from 5 perspectives with multiple metrics. Our findings indicate that while current LLMs demonstrate strong capabilities in many areas, they are still not sufficiently advanced to serve as the central agent core in a fully operational radiology agent system. Additionally, we identify key factors influencing the performance of LLM-based agent cores, offering insights for clinicians on how to apply agent systems in real-world radiology practices effectively. All of our code and data are open-sourced in https://github.com/MAGIC-AI4Med/RadABench.
Abstract:Medical image segmentation has recently demonstrated impressive progress with deep neural networks, yet the heterogeneous modalities and scarcity of mask annotations limit the development of segmentation models on unannotated modalities. This paper investigates a new paradigm for leveraging generative models in medical applications: controllably synthesizing data for unannotated modalities, without requiring registered data pairs. Specifically, we make the following contributions in this paper: (i) we collect and curate a large-scale radiology image-text dataset, MedGen-1M, comprising modality labels, attributes, region, and organ information, along with a subset of organ mask annotations, to support research in controllable medical image generation; (ii) we propose a diffusion-based data engine, termed MRGen, which enables generation conditioned on text prompts and masks, synthesizing MR images for diverse modalities lacking mask annotations, to train segmentation models on unannotated modalities; (iii) we conduct extensive experiments across various modalities, illustrating that our data engine can effectively synthesize training samples and extend MRI segmentation towards unannotated modalities.
Abstract:With the rapid advancement of multimodal information retrieval, increasingly complex retrieval tasks have emerged. Existing methods predominately rely on task-specific fine-tuning of vision-language models, often those trained with image-text contrastive learning. In this paper, we explore the possibility of re-purposing generative Large Multimodal Models (LMMs) for retrieval. This approach enables unifying all retrieval tasks under the same formulation and, more importantly, allows for extrapolation towards unseen retrieval tasks without additional training. Our contributions can be summarised in the following aspects: (i) We introduce LamRA, a versatile framework designed to empower LMMs with sophisticated retrieval and reranking capabilities. (ii) For retrieval, we adopt a two-stage training strategy comprising language-only pre-training and multimodal instruction tuning to progressively enhance LMM's retrieval performance. (iii) For reranking, we employ joint training for both pointwise and listwise reranking, offering two distinct ways to further boost the retrieval performance. (iv) Extensive experimental results underscore the efficacy of our method in handling more than ten retrieval tasks, demonstrating robust performance in both supervised and zero-shot settings, including scenarios involving previously unseen retrieval tasks.