Abstract:Artificial intelligence generative models exhibit remarkable capabilities in content creation, particularly in face image generation, customization, and restoration. However, current AI-generated faces (AIGFs) often fall short of human preferences due to unique distortions, unrealistic details, and unexpected identity shifts, underscoring the need for a comprehensive quality evaluation framework for AIGFs. To address this need, we introduce FaceQ, a large-scale, comprehensive database of AI-generated Face images with fine-grained Quality annotations reflecting human preferences. The FaceQ database comprises 12,255 images generated by 29 models across three tasks: (1) face generation, (2) face customization, and (3) face restoration. It includes 32,742 mean opinion scores (MOSs) from 180 annotators, assessed across multiple dimensions: quality, authenticity, identity (ID) fidelity, and text-image correspondence. Using the FaceQ database, we establish F-Bench, a benchmark for comparing and evaluating face generation, customization, and restoration models, highlighting strengths and weaknesses across various prompts and evaluation dimensions. Additionally, we assess the performance of existing image quality assessment (IQA), face quality assessment (FQA), AI-generated content image quality assessment (AIGCIQA), and preference evaluation metrics, manifesting that these standard metrics are relatively ineffective in evaluating authenticity, ID fidelity, and text-image correspondence. The FaceQ database will be publicly available upon publication.
Abstract:In the past decades, lots of progress have been done in the video compression field including traditional video codec and learning-based video codec. However, few studies focus on using preprocessing techniques to improve the rate-distortion performance. In this paper, we propose a rate-perception optimized preprocessing (RPP) method. We first introduce an adaptive Discrete Cosine Transform loss function which can save the bitrate and keep essential high frequency components as well. Furthermore, we also combine several state-of-the-art techniques from low-level vision fields into our approach, such as the high-order degradation model, efficient lightweight network design, and Image Quality Assessment model. By jointly using these powerful techniques, our RPP approach can achieve on average, 16.27% bitrate saving with different video encoders like AVC, HEVC, and VVC under multiple quality metrics. In the deployment stage, our RPP method is very simple and efficient which is not required any changes in the setting of video encoding, streaming, and decoding. Each input frame only needs to make a single pass through RPP before sending into video encoders. In addition, in our subjective visual quality test, 87% of users think videos with RPP are better or equal to videos by only using the codec to compress, while these videos with RPP save about 12% bitrate on average. Our RPP framework has been integrated into the production environment of our video transcoding services which serve millions of users every day.
Abstract:Providing quality-constant streams can simultaneously guarantee user experience and prevent wasting bit-rate. In this paper, we propose a novel deep learning based two-pass encoder parameter prediction framework to decide rate factor (RF), with which encoder can output streams with constant quality. For each one-shot segment in a video, the proposed method firstly extracts spatial, temporal and pre-coding features by an ultra fast pre-process. Based on these features, a RF parameter is predicted by a deep neural network. Video encoder uses the RF to compress segment as the first encoding pass. Then VMAF quality of the first pass encoding is measured. If the quality doesn't meet target, a second pass RF prediction and encoding will be performed. With the help of first pass predicted RF and corresponding actual quality as feedback, the second pass prediction will be highly accurate. Experiments show the proposed method requires only 1.55 times encoding complexity on average, meanwhile the accuracy, that the compressed video's actual VMAF is within $\pm1$ around the target VMAF, reaches 98.88%.
Abstract:Recently, learning based video compression methods attract increasing attention. However, the previous works suffer from error propagation due to the accumulation of reconstructed error in inter predictive coding. Meanwhile, the previous learning based video codecs are also not adaptive to different video contents. To address these two problems, we propose a content adaptive and error propagation aware video compression system. Specifically, our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame. Based on the learned long-term temporal information, our approach effectively alleviates error propagation in reconstructed frames. More importantly, instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system. The proposed approach updates the parameters for encoder according to the rate-distortion criterion but keeps the decoder unchanged in the inference stage. Therefore, the encoder is adaptive to different video contents and achieves better compression performance by reducing the domain gap between the training and testing datasets. Our method is simple yet effective and outperforms the state-of-the-art learning based video codecs on benchmark datasets without increasing the model size or decreasing the decoding speed.
Abstract:Conventional video compression approaches use the predictive coding architecture and encode the corresponding motion information and residual information. In this paper, taking advantage of both classical architecture in the conventional video compression method and the powerful non-linear representation ability of neural networks, we propose the first end-to-end video compression deep model that jointly optimizes all the components for video compression. Specifically, learning based optical flow estimation is utilized to obtain the motion information and reconstruct the current frames. Then we employ two auto-encoder style neural networks to compress the corresponding motion and residual information. All the modules are jointly learned through a single loss function, in which they collaborate with each other by considering the trade-off between reducing the number of compression bits and improving quality of the decoded video. Experimental results show that the proposed approach outperforms the widely used video coding standard H.264 in terms of PSNR and be even on par with the latest standard H.265 in terms of MS-SSIM. Code will be publicly available upon acceptance.