Abstract:This paper focuses on precoding design in multi-antenna systems with improper Gaussian interference (IGI), characterized by correlated real and imaginary parts. We first study block level precoding (BLP) and symbol level precoding (SLP) assuming the receivers apply a pre-whitening filter to decorrelate and normalize the IGI. We then shift to the scenario where the base station (BS) incorporates the IGI statistics in the SLP design, which allows the receivers to employ a standard detection algorithm without pre-whitenting. Finally we address the case where the channel and statistics of the IGI are unknown, and we formulate robust BLP and SLP designs that minimize the worst case performance in such settings. Interestingly, we show that for BLP, the worst-case IGI is in fact proper, while for SLP the worst case occurs when the interference signal is maximally improper, with fully correlated real and imaginary parts. Numerical results reveal the superior performance of SLP in terms of symbol error rate (SER) and energy efficiency (EE), especially for the case where there is uncertainty in the non-circularity of the jammer.
Abstract:Human-like large language models (LLMs), especially the most powerful and popular ones in OpenAI's GPT family, have proven to be very helpful for many natural language processing (NLP) related tasks. Therefore, various attempts have been made to apply LLMs to information extraction (IE), which is a fundamental NLP task that involves extracting information from unstructured plain text. To demonstrate the latest representative progress in LLMs' information extraction ability, we assess the information extraction ability of GPT-4 (the latest version of GPT at the time of writing this paper) from four perspectives: Performance, Evaluation Criteria, Robustness, and Error Types. Our results suggest a visible performance gap between GPT-4 and state-of-the-art (SOTA) IE methods. To alleviate this problem, considering the LLMs' human-like characteristics, we propose and analyze the effects of a series of simple prompt-based methods, which can be generalized to other LLMs and NLP tasks. Rich experiments show our methods' effectiveness and some of their remaining issues in improving GPT-4's information extraction ability.
Abstract:Animating virtual characters has always been a fundamental research problem in virtual reality (VR). Facial animations play a crucial role as they effectively convey emotions and attitudes of virtual humans. However, creating such facial animations can be challenging, as current methods often involve utilization of expensive motion capture devices or significant investments of time and effort from human animators in tuning animation parameters. In this paper, we propose a holistic solution to automatically animate virtual human faces. In our solution, a deep learning model was first trained to retarget the facial expression from input face images to virtual human faces by estimating the blendshape coefficients. This method offers the flexibility of generating animations with characters of different appearances and blendshape topologies. Second, a practical toolkit was developed using Unity 3D, making it compatible with the most popular VR applications. The toolkit accepts both image and video as input to animate the target virtual human faces and enables users to manipulate the animation results. Furthermore, inspired by the spirit of Human-in-the-loop (HITL), we leveraged user feedback to further improve the performance of the model and toolkit, thereby increasing the customization properties to suit user preferences. The whole solution, for which we will make the code public, has the potential to accelerate the generation of facial animations for use in VR applications.
Abstract:This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.
Abstract:Automated driving vehicles~(ADV) promise to enhance driving efficiency and safety, yet they face intricate challenges in safety-critical scenarios. As a result, validating ADV within generated safety-critical scenarios is essential for both development and performance evaluations. This paper investigates the complexities of employing two major scenario-generation solutions: data-driven and knowledge-driven methods. Data-driven methods derive scenarios from recorded datasets, efficiently generating scenarios by altering the existing behavior or trajectories of traffic participants but often falling short in considering ADV perception; knowledge-driven methods provide effective coverage through expert-designed rules, but they may lead to inefficiency in generating safety-critical scenarios within that coverage. To overcome these challenges, we introduce BridgeGen, a safety-critical scenario generation framework, designed to bridge the benefits of both methodologies. Specifically, by utilizing ontology-based techniques, BridgeGen models the five scenario layers in the operational design domain (ODD) from knowledge-driven methods, ensuring broad coverage, and incorporating data-driven strategies to efficiently generate safety-critical scenarios. An optimized scenario generation toolkit is developed within BridgeGen. This expedites the crafting of safety-critical scenarios through a combination of traditional optimization and reinforcement learning schemes. Extensive experiments conducted using Carla simulator demonstrate the effectiveness of BridgeGen in generating diverse safety-critical scenarios.
Abstract:With the advancement of data-driven techniques, addressing continuous con-trol challenges has become more efficient. However, the reliance of these methods on historical data introduces the potential for unexpected decisions in novel scenarios. To enhance performance in autonomous driving and collision avoidance, we propose a symbiotic fusion of policy gradient with safety-based control. In this study, we em-ploy the Deep Deterministic Policy Gradient (DDPG) algorithm to enable autono-mous driving in the absence of surrounding vehicles. By training the vehicle's driving policy within a stable and familiar environment, a robust and efficient learning pro-cess is achieved. Subsequently, an artificial potential field approach is utilized to formulate a collision avoidance algorithm, accounting for the presence of surround-ing vehicles. Furthermore, meticulous consideration is given to path tracking meth-ods. The amalgamation of these approaches demonstrates substantial performance across diverse scenarios, underscoring its potential for advancing autonomous driving while upholding safety standards.
Abstract:A morph is a combination of two separate facial images and contains identity information of two different people. When used in an identity document, both people can be authenticated by a biometric Face Recognition (FR) system. Morphs can be generated using either a landmark-based approach or approaches based on deep learning such as Generative Adversarial Networks (GAN). In a recent paper, we introduced a \emph{worst-case} upper bound on how challenging morphing attacks can be for an FR system. The closer morphs are to this upper bound, the bigger the challenge they pose to FR. We introduced an approach with which it was possible to generate morphs that approximate this upper bound for a known FR system (white box), but not for unknown (black box) FR systems. In this paper, we introduce a morph generation method that can approximate worst-case morphs even when the FR system is not known. A key contribution is that we include the goal of generating difficult morphs \emph{during} training. Our method is based on Adversarially Learned Inference (ALI) and uses concepts from Wasserstein GANs trained with Gradient Penalty, which were introduced to stabilise the training of GANs. We include these concepts to achieve similar improvement in training stability and call the resulting method Wasserstein ALI (WALI). We finetune WALI using loss functions designed specifically to improve the ability to manipulate identity information in facial images and show how it can generate morphs that are more challenging for FR systems than landmark- or GAN-based morphs. We also show how our findings can be used to improve MIPGAN, an existing StyleGAN-based morph generator.
Abstract:Verbal and non-verbal human reaction generation is a challenging task, as different reactions could be appropriate for responding to the same behaviour. This paper proposes the first multiple and multimodal (verbal and nonverbal) appropriate human reaction generation framework that can generate appropriate and realistic human-style reactions (displayed in the form of synchronised text, audio and video streams) in response to an input user behaviour. This novel technique can be applied to various human-computer interaction scenarios by generating appropriate virtual agent/robot behaviours. Our demo is available at \url{https://github.com/SSYSteve/MRecGen}.
Abstract:Generating facial reactions in a human-human dyadic interaction is complex and highly dependent on the context since more than one facial reactions can be appropriate for the speaker's behaviour. This has challenged existing machine learning (ML) methods, whose training strategies enforce models to reproduce a specific (not multiple) facial reaction from each input speaker behaviour. This paper proposes the first multiple appropriate facial reaction generation framework that re-formulates the one-to-many mapping facial reaction generation problem as a one-to-one mapping problem. This means that we approach this problem by considering the generation of a distribution of the listener's appropriate facial reactions instead of multiple different appropriate facial reactions, i.e., 'many' appropriate facial reaction labels are summarised as 'one' distribution label during training. Our model consists of a perceptual processor, a cognitive processor, and a motor processor. The motor processor is implemented with a novel Reversible Multi-dimensional Edge Graph Neural Network (REGNN). This allows us to obtain a distribution of appropriate real facial reactions during the training process, enabling the cognitive processor to be trained to predict the appropriate facial reaction distribution. At the inference stage, the REGNN decodes an appropriate facial reaction by using this distribution as input. Experimental results demonstrate that our approach outperforms existing models in generating more appropriate, realistic, and synchronized facial reactions. The improved performance is largely attributed to the proposed appropriate facial reaction distribution learning strategy and the use of a REGNN. The code is available at https://github.com/TongXu-05/REGNN-Multiple-Appropriate-Facial-Reaction-Generation.
Abstract:ChatGPT has stimulated the research boom in the field of large language models. In this paper, we assess the capabilities of ChatGPT from four perspectives including Performance, Evaluation Criteria, Robustness and Error Types. Specifically, we first evaluate ChatGPT's performance on 17 datasets with 14 IE sub-tasks under the zero-shot, few-shot and chain-of-thought scenarios, and find a huge performance gap between ChatGPT and SOTA results. Next, we rethink this gap and propose a soft-matching strategy for evaluation to more accurately reflect ChatGPT's performance. Then, we analyze the robustness of ChatGPT on 14 IE sub-tasks, and find that: 1) ChatGPT rarely outputs invalid responses; 2) Irrelevant context and long-tail target types greatly affect ChatGPT's performance; 3) ChatGPT cannot understand well the subject-object relationships in RE task. Finally, we analyze the errors of ChatGPT, and find that "unannotated spans" is the most dominant error type. This raises concerns about the quality of annotated data, and indicates the possibility of annotating data with ChatGPT. The data and code are released at Github site.