Abstract:Earth Observation (EO) data analysis has been significantly revolutionized by deep learning (DL), with applications typically limited to grid-like data structures. Graph Neural Networks (GNNs) emerge as an important innovation, propelling DL into the non-Euclidean domain. Naturally, GNNs can effectively tackle the challenges posed by diverse modalities, multiple sensors, and the heterogeneous nature of EO data. To introduce GNNs in the related domains, our review begins by offering fundamental knowledge on GNNs. Then, we summarize the generic problems in EO, to which GNNs can offer potential solutions. Following this, we explore a broad spectrum of GNNs' applications to scientific problems in Earth systems, covering areas such as weather and climate analysis, disaster management, air quality monitoring, agriculture, land cover classification, hydrological process modeling, and urban modeling. The rationale behind adopting GNNs in these fields is explained, alongside methodologies for organizing graphs and designing favorable architectures for various tasks. Furthermore, we highlight methodological challenges of implementing GNNs in these domains and possible solutions that could guide future research. While acknowledging that GNNs are not a universal solution, we conclude the paper by comparing them with other popular architectures like transformers and analyzing their potential synergies.
Abstract:Due to its cloud-penetrating capability and independence from solar illumination, satellite Synthetic Aperture Radar (SAR) is the preferred data source for large-scale flood mapping, providing global coverage and including various land cover classes. However, most studies on large-scale SAR-derived flood mapping using deep learning algorithms have primarily focused on flooded open areas, utilizing available open-access datasets (e.g., Sen1Floods11) and with limited attention to urban floods. To address this gap, we introduce \textbf{UrbanSARFloods}, a floodwater dataset featuring pre-processed Sentinel-1 intensity data and interferometric coherence imagery acquired before and during flood events. It contains 8,879 $512\times 512$ chips covering 807,500 $km^2$ across 20 land cover classes and 5 continents, spanning 18 flood events. We used UrbanSARFloods to benchmark existing state-of-the-art convolutional neural networks (CNNs) for segmenting open and urban flood areas. Our findings indicate that prevalent approaches, including the Weighted Cross-Entropy (WCE) loss and the application of transfer learning with pretrained models, fall short in overcoming the obstacles posed by imbalanced data and the constraints of a small training dataset. Urban flood detection remains challenging. Future research should explore strategies for addressing imbalanced data challenges and investigate transfer learning's potential for SAR-based large-scale flood mapping. Besides, expanding this dataset to include additional flood events holds promise for enhancing its utility and contributing to advancements in flood mapping techniques.
Abstract:Foundation models have enormous potential in advancing Earth and climate sciences, however, current approaches may not be optimal as they focus on a few basic features of a desirable Earth and climate foundation model. Crafting the ideal Earth foundation model, we define eleven features which would allow such a foundation model to be beneficial for any geoscientific downstream application in an environmental- and human-centric manner.We further shed light on the way forward to achieve the ideal model and to evaluate Earth foundation models. What comes after foundation models? Energy efficient adaptation, adversarial defenses, and interpretability are among the emerging directions.
Abstract:The development of foundation models has revolutionized our ability to interpret the Earth's surface using satellite observational data. Traditional models have been siloed, tailored to specific sensors or data types like optical, radar, and hyperspectral, each with its own unique characteristics. This specialization hinders the potential for a holistic analysis that could benefit from the combined strengths of these diverse data sources. Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science to integrate various data modalities into a single framework adaptively. This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining. DOFA's innovative design offers a promising leap towards more accurate, efficient, and unified Earth observation analysis, showcasing remarkable adaptability and performance in harnessing the potential of multimodal Earth observation data.
Abstract:Wildfire forecasting is notoriously hard due to the complex interplay of different factors such as weather conditions, vegetation types and human activities. Deep learning models show promise in dealing with this complexity by learning directly from data. However, to inform critical decision making, we argue that we need models that are right for the right reasons; that is, the implicit rules learned should be grounded by the underlying processes driving wildfires. In that direction, we propose integrating causality with Graph Neural Networks (GNNs) that explicitly model the causal mechanism among complex variables via graph learning. The causal adjacency matrix considers the synergistic effect among variables and removes the spurious links from highly correlated impacts. Our methodology's effectiveness is demonstrated through superior performance forecasting wildfire patterns in the European boreal and mediterranean biome. The gain is especially prominent in a highly imbalanced dataset, showcasing an enhanced robustness of the model to adapt to regime shifts in functional relationships. Furthermore, SHAP values from our trained model further enhance our understanding of the model's inner workings.
Abstract:An in-depth comprehension of global land cover is essential in Earth observation, forming the foundation for a multitude of applications. Although remote sensing technology has advanced rapidly, leading to a proliferation of satellite imagery, the inherent complexity of these images often makes them difficult for non-expert users to understand. Natural language, as a carrier of human knowledge, can be a bridge between common users and complicated satellite imagery. In this context, we introduce a global-scale, high-quality image-text dataset for remote sensing, providing natural language descriptions for Sentinel-2 data to facilitate the understanding of satellite imagery for common users. Specifically, we utilize Sentinel-2 data for its global coverage as the foundational image source, employing semantic segmentation labels from the European Space Agency's (ESA) WorldCover project to enrich the descriptions of land covers. By conducting in-depth semantic analysis, we formulate detailed prompts to elicit rich descriptions from ChatGPT. To enhance the dataset's quality, we introduce the manual verification process. This step involves manual inspection and correction to refine the dataset, thus significantly improving its accuracy and quality. Finally, we offer the community ChatEarthNet, a large-scale image-text dataset characterized by global coverage, high quality, wide-ranging diversity, and detailed descriptions. ChatEarthNet consists of 163,488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10,000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training vision-language geo-foundation models and evaluating large vision-language models for remote sensing. The dataset will be made publicly available.
Abstract:Subseasonal forecasting, which is pivotal for agriculture, water resource management, and early warning of disasters, faces challenges due to the chaotic nature of the atmosphere. Recent advances in machine learning (ML) have revolutionized weather forecasting by achieving competitive predictive skills to numerical models. However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions and limits their broader applicability. Moreover, ML models tend to fool the pixel-wise error scores by producing smoothed results which lack physical consistency and meteorological meaning. To deal with the aforementioned problems, we propose a teleconnection-informed transformer. Our architecture leverages the pretrained Pangu model to achieve good initial weights and integrates a teleconnection-informed temporal module to improve predictability in an extended temporal range. Remarkably, by adjusting 1.1% of the Pangu model's parameters, our method enhances predictability on four surface and five upper-level atmospheric variables at a two-week lead time. Furthermore, the teleconnection-filtered features improve the spatial granularity of outputs significantly, indicating their potential physical consistency. Our research underscores the importance of atmospheric and oceanic teleconnections in driving future weather conditions. Besides, it presents a resource-efficient pathway for researchers to leverage existing foundation models on versatile downstream tasks.
Abstract:Large language models (LLMs) have recently been extended to the vision-language realm, obtaining impressive general multi-modal capabilities. However, the exploration of multi-modal large language models (MLLMs) for remote sensing (RS) data is still in its infancy, and the performance is not satisfactory. In this work, we introduce SkyEyeGPT, a unified multi-modal large language model specifically designed for RS vision-language understanding. To this end, we meticulously curate an RS multi-modal instruction tuning dataset, including single-task and multi-task conversation instructions. After manual verification, we obtain a high-quality RS instruction-following dataset with 968k samples. Our research demonstrates that with a simple yet effective design, SkyEyeGPT works surprisingly well on considerably different tasks without the need for extra encoding modules. Specifically, after projecting RS visual features to the language domain via an alignment layer, they are fed jointly with task-specific instructions into an LLM-based RS decoder to predict answers for RS open-ended tasks. In addition, we design a two-stage tuning method to enhance instruction-following and multi-turn dialogue ability at different granularities. Experiments on 8 datasets for RS vision-language tasks demonstrate SkyEyeGPT's superiority in image-level and region-level tasks, such as captioning and visual grounding. In particular, SkyEyeGPT exhibits encouraging results compared to GPT-4V in some qualitative tests. The online demo, code, and dataset will be released in https://github.com/ZhanYang-nwpu/SkyEyeGPT.
Abstract:Foundation models characterized by extensive parameters and trained on large-scale datasets have demonstrated remarkable efficacy across various downstream tasks for remote sensing data. Current remote sensing foundation models typically specialize in a single modality or a specific spatial resolution range, limiting their versatility for downstream datasets. While there have been attempts to develop multi-modal remote sensing foundation models, they typically employ separate vision encoders for each modality or spatial resolution, necessitating a switch in backbones contingent upon the input data. To address this issue, we introduce a simple yet effective method, termed OFA-Net (One-For-All Network): employing a single, shared Transformer backbone for multiple data modalities with different spatial resolutions. Using the masked image modeling mechanism, we pre-train a single Transformer backbone on a curated multi-modal dataset with this simple design. Then the backbone model can be used in different downstream tasks, thus forging a path towards a unified foundation backbone model in Earth vision. The proposed method is evaluated on 12 distinct downstream tasks and demonstrates promising performance.
Abstract:We introduce a novel task of 3D visual grounding in monocular RGB images using language descriptions with both appearance and geometry information. Specifically, we build a large-scale dataset, Mono3DRefer, which contains 3D object targets with their corresponding geometric text descriptions, generated by ChatGPT and refined manually. To foster this task, we propose Mono3DVG-TR, an end-to-end transformer-based network, which takes advantage of both the appearance and geometry information in text embeddings for multi-modal learning and 3D object localization. Depth predictor is designed to explicitly learn geometry features. The dual text-guided adapter is proposed to refine multiscale visual and geometry features of the referred object. Based on depth-text-visual stacking attention, the decoder fuses object-level geometric cues and visual appearance into a learnable query. Comprehensive benchmarks and some insightful analyses are provided for Mono3DVG. Extensive comparisons and ablation studies show that our method significantly outperforms all baselines. The dataset and code will be publicly available at: https://github.com/ZhanYang-nwpu/Mono3DVG.