Abstract:What do humans do when confronted with a common challenge: we know where we want to go but we are not yet sure the best way to get there, or even if we can. This is the problem posed to agents during spatial navigation and pathfinding, and its solution may give us clues about the more abstract domain of planning in general. In this work, we model pathfinding behavior in a continuous, explicitly exploratory paradigm. In our task, participants (and agents) must coordinate both visual exploration and navigation within a partially observable environment. Our contribution has three primary components: 1) an analysis of behavioral data from 81 human participants in a novel pathfinding paradigm conducted as an online experiment, 2) a proposal to model prospective mental simulation during navigation as particle filtering, and 3) an instantiation of this proposal in a computational agent. We show that our model, Active Dynamical Prospection, demonstrates similar patterns of map solution rate, path selection, and trial duration, as well as attentional behavior (at both aggregate and individual levels) when compared with data from human participants. We also find that both distal attention and delay prior to first move (both potential correlates of prospective simulation) are predictive of task performance.
Abstract:The migration of robots from the laboratory into sensitive home settings as commercially available therapeutic agents represents a significant transition for information privacy and ethical imperatives. We present new privacy paradigms and apply the Fair Information Practices (FIPs) to investigate concerns unique to the placement of therapeutic robots in private home contexts. We then explore the importance and utility of research ethics as operationalized by existing human subjects research frameworks to guide the consideration of therapeutic robotic users -- a step vital to the continued research and development of these platforms. Together, privacy and research ethics frameworks provide two complementary approaches to protect users and ensure responsible yet robust information sharing for technology development. We make recommendations for the implementation of these principles -- paying particular attention to specific principles that apply to vulnerable individuals (i.e., children, disabled, or elderly persons)--to promote the adoption and continued improvement of long-term, responsible, and research-enabled robotics in private settings.