University of St.Gallen, Switzerland
Abstract:The increasing demand for privacy-preserving data analytics in finance necessitates solutions for synthetic data generation that rigorously uphold privacy standards. We introduce DP-Fed-FinDiff framework, a novel integration of Differential Privacy, Federated Learning and Denoising Diffusion Probabilistic Models designed to generate high-fidelity synthetic tabular data. This framework ensures compliance with stringent privacy regulations while maintaining data utility. We demonstrate the effectiveness of DP-Fed-FinDiff on multiple real-world financial datasets, achieving significant improvements in privacy guarantees without compromising data quality. Our empirical evaluations reveal the optimal trade-offs between privacy budgets, client configurations, and federated optimization strategies. The results affirm the potential of DP-Fed-FinDiff to enable secure data sharing and robust analytics in highly regulated domains, paving the way for further advances in federated learning and privacy-preserving data synthesis.
Abstract:Credit card fraud has significant implications at both an individual and societal level, making effective prevention essential. Current methods rely heavily on feature engineering and labeled information, both of which have significant limitations. In this work, we present GraphGuard, a novel contrastive self-supervised graph-based framework for detecting fraudulent credit card transactions. We conduct experiments on a real-world dataset and a synthetic dataset. Our results provide a promising initial direction for exploring the effectiveness of graph-based self-supervised approaches for credit card fraud detection.
Abstract:Learning representations of well-trained neural network models holds the promise to provide an understanding of the inner workings of those models. However, previous work has either faced limitations when processing larger networks or was task-specific to either discriminative or generative tasks. This paper introduces the SANE approach to weight-space learning. SANE overcomes previous limitations by learning task-agnostic representations of neural networks that are scalable to larger models of varying architectures and that show capabilities beyond a single task. Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights, thus allowing one to embed larger neural networks as a set of tokens into the learned representation space. SANE reveals global model information from layer-wise embeddings, and it can sequentially generate unseen neural network models, which was unattainable with previous hyper-representation learning methods. Extensive empirical evaluation demonstrates that SANE matches or exceeds state-of-the-art performance on several weight representation learning benchmarks, particularly in initialization for new tasks and larger ResNet architectures.
Abstract:The development of foundation models has revolutionized our ability to interpret the Earth's surface using satellite observational data. Traditional models have been siloed, tailored to specific sensors or data types like optical, radar, and hyperspectral, each with its own unique characteristics. This specialization hinders the potential for a holistic analysis that could benefit from the combined strengths of these diverse data sources. Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science to integrate various data modalities into a single framework adaptively. This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining. DOFA's innovative design offers a promising leap towards more accurate, efficient, and unified Earth observation analysis, showcasing remarkable adaptability and performance in harnessing the potential of multimodal Earth observation data.
Abstract:The loss function plays an important role in optimizing the performance of a learning system. A crucial aspect of the loss function is the assignment of sample weights within a mini-batch during loss computation. In the context of continual learning (CL), most existing strategies uniformly treat samples when calculating the loss value, thereby assigning equal weights to each sample. While this approach can be effective in certain standard benchmarks, its optimal effectiveness, particularly in more complex scenarios, remains underexplored. This is particularly pertinent in training "in the wild," such as with self-training, where labeling is automated using a reference model. This paper introduces the Online Meta-learning for Sample Importance (OMSI) strategy that approximates sample weights for a mini-batch in an online CL stream using an inner- and meta-update mechanism. This is done by first estimating sample weight parameters for each sample in the mini-batch, then, updating the model with the adapted sample weights. We evaluate OMSI in two distinct experimental settings. First, we show that OMSI enhances both learning and retained accuracy in a controlled noisy-labeled data stream. Then, we test the strategy in three standard benchmarks and compare it with other popular replay-based strategies. This research aims to foster the ongoing exploration in the area of self-adaptive CL.
Abstract:Realistic synthetic tabular data generation encounters significant challenges in preserving privacy, especially when dealing with sensitive information in domains like finance and healthcare. In this paper, we introduce \textit{Federated Tabular Diffusion} (FedTabDiff) for generating high-fidelity mixed-type tabular data without centralized access to the original tabular datasets. Leveraging the strengths of \textit{Denoising Diffusion Probabilistic Models} (DDPMs), our approach addresses the inherent complexities in tabular data, such as mixed attribute types and implicit relationships. More critically, FedTabDiff realizes a decentralized learning scheme that permits multiple entities to collaboratively train a generative model while respecting data privacy and locality. We extend DDPMs into the federated setting for tabular data generation, which includes a synchronous update scheme and weighted averaging for effective model aggregation. Experimental evaluations on real-world financial and medical datasets attest to the framework's capability to produce synthetic data that maintains high fidelity, utility, privacy, and coverage.
Abstract:We propose the application of Transformer-based language models for classifying entity legal forms from raw legal entity names. Specifically, we employ various BERT variants and compare their performance against multiple traditional baselines. Our evaluation encompasses a substantial subset of freely available Legal Entity Identifier (LEI) data, comprising over 1.1 million legal entities from 30 different legal jurisdictions. The ground truth labels for classification per jurisdiction are taken from the Entity Legal Form (ELF) code standard (ISO 20275). Our findings demonstrate that pre-trained BERT variants outperform traditional text classification approaches in terms of F1 score, while also performing comparably well in the Macro F1 Score. Moreover, the validity of our proposal is supported by the outcome of third-party expert reviews conducted in ten selected jurisdictions. This study highlights the significant potential of Transformer-based models in advancing data standardization and data integration. The presented approaches can greatly benefit financial institutions, corporations, governments and other organizations in assessing business relationships, understanding risk exposure, and promoting effective governance.
Abstract:The sharing of microdata, such as fund holdings and derivative instruments, by regulatory institutions presents a unique challenge due to strict data confidentiality and privacy regulations. These challenges often hinder the ability of both academics and practitioners to conduct collaborative research effectively. The emergence of generative models, particularly diffusion models, capable of synthesizing data mimicking the underlying distributions of real-world data presents a compelling solution. This work introduces 'FinDiff', a diffusion model designed to generate real-world financial tabular data for a variety of regulatory downstream tasks, for example economic scenario modeling, stress tests, and fraud detection. The model uses embedding encodings to model mixed modality financial data, comprising both categorical and numeric attributes. The performance of FinDiff in generating synthetic tabular financial data is evaluated against state-of-the-art baseline models using three real-world financial datasets (including two publicly available datasets and one proprietary dataset). Empirical results demonstrate that FinDiff excels in generating synthetic tabular financial data with high fidelity, privacy, and utility.
Abstract:Deep learning methods have proven to be a powerful tool in the analysis of large amounts of complex Earth observation data. However, while Earth observation data are multi-modal in most cases, only single or few modalities are typically considered. In this work, we present the ben-ge dataset, which supplements the BigEarthNet-MM dataset by compiling freely and globally available geographical and environmental data. Based on this dataset, we showcase the value of combining different data modalities for the downstream tasks of patch-based land-use/land-cover classification and land-use/land-cover segmentation. ben-ge is freely available and expected to serve as a test bed for fully supervised and self-supervised Earth observation applications.
Abstract:Hypernetworks mitigate forgetting in continual learning (CL) by generating task-dependent weights and penalizing weight changes at a meta-model level. Unfortunately, generating all weights is not only computationally expensive for larger architectures, but also, it is not well understood whether generating all model weights is necessary. Inspired by latent replay methods in CL, we propose partial weight generation for the final layers of a model using hypernetworks while freezing the initial layers. With this objective, we first answer the question of how many layers can be frozen without compromising the final performance. Through several experiments, we empirically show that the number of layers that can be frozen is proportional to the distributional similarity in the CL stream. Then, to demonstrate the effectiveness of hypernetworks, we show that noisy streams can significantly impact the performance of latent replay methods, leading to increased forgetting when features from noisy experiences are replayed with old samples. In contrast, partial hypernetworks are more robust to noise by maintaining accuracy on previous experiences. Finally, we conduct experiments on the split CIFAR-100 and TinyImagenet benchmarks and compare different versions of partial hypernetworks to latent replay methods. We conclude that partial weight generation using hypernetworks is a promising solution to the problem of forgetting in neural networks. It can provide an effective balance between computation and final test accuracy in CL streams.