Abstract:We investigate the adversarial robustness of LLMs in transfer learning scenarios. Through comprehensive experiments on multiple datasets (MBIB Hate Speech, MBIB Political Bias, MBIB Gender Bias) and various model architectures (BERT, RoBERTa, GPT-2, Gemma, Phi), we reveal that transfer learning, while improving standard performance metrics, often leads to increased vulnerability to adversarial attacks. Our findings demonstrate that larger models exhibit greater resilience to this phenomenon, suggesting a complex interplay between model size, architecture, and adaptation methods. Our work highlights the crucial need for considering adversarial robustness in transfer learning scenarios and provides insights into maintaining model security without compromising performance. These findings have significant implications for the development and deployment of LLMs in real-world applications where both performance and robustness are paramount.
Abstract:Recent research has shown that state-of-the-art (SotA) Automatic Speech Recognition (ASR) systems, such as Whisper, often exhibit predictive biases that disproportionately affect various demographic groups. This study focuses on identifying the performance disparities of Whisper models on Dutch speech data from the Common Voice dataset and the Dutch National Public Broadcasting organisation. We analyzed the word error rate, character error rate and a BERT-based semantic similarity across gender groups. We used the moral framework of Weerts et al. (2022) to assess quality of service harms and fairness, and to provide a nuanced discussion on the implications of these biases, particularly for automatic subtitling. Our findings reveal substantial disparities in word error rate (WER) among gender groups across all model sizes, with bias identified through statistical testing.
Abstract:In-context learning (ICL) and Retrieval-Augmented Generation (RAG) have gained attention for their ability to enhance LLMs' reasoning by incorporating external knowledge but suffer from limited contextual window size, leading to insufficient information injection. To this end, we propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules, which are injected into LLMs to boost their reasoning capabilities. Our method begins by formulating the search process relying on LLMs' commonsense, where LLMs automatically define head and body predicates. Then, RuAG applies Monte Carlo Tree Search (MCTS) to address the combinational searching space and efficiently discover logic rules from data. The resulting logic rules are translated into natural language, allowing targeted knowledge injection and seamless integration into LLM prompts for LLM's downstream task reasoning. We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks, demonstrating its effectiveness in enhancing LLM's capability over diverse tasks.
Abstract:The integration of large language model (LLM) techniques in the field of medical analysis has brought about significant advancements, yet the scarcity of large, diverse, and well-annotated datasets remains a major challenge. Medical data and tasks, which vary in format, size, and other parameters, require extensive preprocessing and standardization for effective use in training LLMs. To address these challenges, we introduce MedINST, the Meta Dataset of Biomedical Instructions, a novel multi-domain, multi-task instructional meta-dataset. MedINST comprises 133 biomedical NLP tasks and over 7 million training samples, making it the most comprehensive biomedical instruction dataset to date. Using MedINST as the meta dataset, we curate MedINST32, a challenging benchmark with different task difficulties aiming to evaluate LLMs' generalization ability. We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.
Abstract:It is generally perceived that Dynamic Sparse Training opens the door to a new era of scalability and efficiency for artificial neural networks at, perhaps, some costs in accuracy performance for the classification task. At the same time, Dense Training is widely accepted as being the "de facto" approach to train artificial neural networks if one would like to maximize their robustness against image corruption. In this paper, we question this general practice. Consequently, we claim that, contrary to what is commonly thought, the Dynamic Sparse Training methods can consistently outperform Dense Training in terms of robustness accuracy, particularly if the efficiency aspect is not considered as a main objective (i.e., sparsity levels between 10% and up to 50%), without adding (or even reducing) resource cost. We validate our claim on two types of data, images and videos, using several traditional and modern deep learning architectures for computer vision and three widely studied Dynamic Sparse Training algorithms. Our findings reveal a new yet-unknown benefit of Dynamic Sparse Training and open new possibilities in improving deep learning robustness beyond the current state of the art.
Abstract:While deep learning has demonstrated impressive progress, it remains a daunting challenge to learn from hard samples as these samples are usually noisy and intricate. These hard samples play a crucial role in the optimal performance of deep neural networks. Most research on Sparse Neural Networks (SNNs) has focused on standard training data, leaving gaps in understanding their effectiveness on complex and challenging data. This paper's extensive investigation across scenarios reveals that most SNNs trained on challenging samples can often match or surpass dense models in accuracy at certain sparsity levels, especially with limited data. We observe that layer-wise density ratios tend to play an important role in SNN performance, particularly for methods that train from scratch without pre-trained initialization. These insights enhance our understanding of SNNs' behavior and potential for efficient learning approaches in data-centric AI. Our code is publicly available at: \url{https://github.com/QiaoXiao7282/hard_sample_learners}.
Abstract:In supervised machine learning, privileged information (PI) is information that is unavailable at inference, but is accessible during training time. Research on learning using privileged information (LUPI) aims to transfer the knowledge captured in PI onto a model that can perform inference without PI. It seems that this extra bit of information ought to make the resulting model better. However, finding conclusive theoretical or empirical evidence that supports the ability to transfer knowledge using PI has been challenging. In this paper, we critically examine the assumptions underlying existing theoretical analyses and argue that there is little theoretical justification for when LUPI should work. We analyze LUPI methods and reveal that apparent improvements in empirical risk of existing research may not directly result from PI. Instead, these improvements often stem from dataset anomalies or modifications in model design misguidedly attributed to PI. Our experiments for a wide variety of application domains further demonstrate that state-of-the-art LUPI approaches fail to effectively transfer knowledge from PI. Thus, we advocate for practitioners to exercise caution when working with PI to avoid unintended inductive biases.
Abstract:The distribution of streaming data often changes over time as conditions change, a phenomenon known as concept drift. Only a subset of previous experience, collected in similar conditions, is relevant to learning an accurate classifier for current data. Learning from irrelevant experience describing a different concept can degrade performance. A system learning from streaming data must identify which recent experience is irrelevant when conditions change and which past experience is relevant when concepts reoccur, \textit{e.g.,} when weather events or financial patterns repeat. Existing streaming approaches either do not consider experience to change in relevance over time and thus cannot handle concept drift, or only consider the recency of experience and thus cannot handle recurring concepts, or only sparsely evaluate relevance and thus fail when concept drift is missed. To enable learning in changing conditions, we propose SELeCT, a probabilistic method for continuously evaluating the relevance of past experience. SELeCT maintains a distinct internal state for each concept, representing relevant experience with a unique classifier. We propose a Bayesian algorithm for estimating state relevance, combining the likelihood of drawing recent observations from a given state with a transition pattern prior based on the system's current state.
Abstract:Despite significant advancements in active learning and adversarial attacks, the intersection of these two fields remains underexplored, particularly in developing robust active learning frameworks against dynamic adversarial threats. The challenge of developing robust active learning frameworks under dynamic adversarial attacks is critical, as these attacks can lead to catastrophic forgetting within the active learning cycle. This paper introduces Robust Active Learning (RoAL), a novel approach designed to address this issue by integrating Elastic Weight Consolidation (EWC) into the active learning process. Our contributions are threefold: First, we propose a new dynamic adversarial attack that poses significant threats to active learning frameworks. Second, we introduce a novel method that combines EWC with active learning to mitigate catastrophic forgetting caused by dynamic adversarial attacks. Finally, we conduct extensive experimental evaluations to demonstrate the efficacy of our approach. The results show that RoAL not only effectively counters dynamic adversarial threats but also significantly reduces the impact of catastrophic forgetting, thereby enhancing the robustness and performance of active learning systems in adversarial environments.
Abstract:Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection. Leveraging the dynamic sparse training (DST) algorithms within SNNs has demonstrated promising feature selection capabilities while drastically reducing computational overheads. Despite these advancements, several critical aspects remain insufficiently explored for feature selection. Questions persist regarding the choice of the DST algorithm for network training, the choice of metric for ranking features/neurons, and the comparative performance of these methods across diverse datasets when compared to dense networks. This paper addresses these gaps by presenting a comprehensive systematic analysis of feature selection with sparse neural networks. Moreover, we introduce a novel metric considering sparse neural network characteristics, which is designed to quantify feature importance within the context of SNNs. Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50\%$ memory and $55\%$ FLOPs reduction compared to the dense networks, while outperforming them in terms of the quality of the selected features. Our code and the supplementary material are available on GitHub (\url{https://github.com/zahraatashgahi/Neuron-Attribution}).