Abstract:As large language model agents increasingly populate networked environments, a fundamental question arises: do artificial intelligence (AI) agent societies undergo convergence dynamics similar to human social systems? Lately, Moltbook approximates a plausible future scenario in which autonomous agents participate in an open-ended, continuously evolving online society. We present the first large-scale systemic diagnosis of this AI agent society. Beyond static observation, we introduce a quantitative diagnostic framework for dynamic evolution in AI agent societies, measuring semantic stabilization, lexical turnover, individual inertia, influence persistence, and collective consensus. Our analysis reveals a system in dynamic balance in Moltbook: while global semantic averages stabilize rapidly, individual agents retain high diversity and persistent lexical turnover, defying homogenization. However, agents exhibit strong individual inertia and minimal adaptive response to interaction partners, preventing mutual influence and consensus. Consequently, influence remains transient with no persistent supernodes, and the society fails to develop stable collective influence anchors due to the absence of shared social memory. These findings demonstrate that scale and interaction density alone are insufficient to induce socialization, providing actionable design and analysis principles for upcoming next-generation AI agent societies.
Abstract:Reinforcement learning (RL) with verifiable rewards has become a standard post-training stage for boosting visual reasoning in vision-language models, yet it remains unclear what capabilities RL actually improves compared with supervised fine-tuning as cold-start initialization (IN). End-to-end benchmark gains conflate multiple factors, making it difficult to attribute improvements to specific skills. To bridge the gap, we propose a Frankenstein-style analysis framework including: (i) functional localization via causal probing; (ii) update characterization via parameter comparison; and (iii) transferability test via model merging. Instead, RL induces a consistent inference-time shift primarily in mid-to-late layers, and these mid-to-late refinements are both transferable (via merging) and necessary (via freezing) for RL gains. Overall, our results suggest that RL's reliable contribution in visual reasoning is not a uniform enhancement of visual perception, but a systematic refinement of mid-to-late transformer computation that improves vision-to-reasoning alignment and reasoning performance, highlighting the limitations of benchmark-only evaluation for understanding multimodal reasoning improvements.
Abstract:Large language models (LLMs) exhibit strong general-purpose reasoning capabilities, yet they frequently hallucinate when used as world models (WMs), where strict compliance with deterministic transition rules--particularly in corner cases--is essential. In contrast, Symbolic WMs provide logical consistency but lack semantic expressivity. To bridge this gap, we propose Neuro-Symbolic Synergy (NeSyS), a framework that integrates the probabilistic semantic priors of LLMs with executable symbolic rules to achieve both expressivity and robustness. NeSyS alternates training between the two models using trajectories inadequately explained by the other. Unlike rule-based prompting, the symbolic WM directly constrains the LLM by modifying its output probability distribution. The neural WM is fine-tuned only on trajectories not covered by symbolic rules, reducing training data by 50% without loss of accuracy. Extensive experiments on three distinct interactive environments, i.e., ScienceWorld, Webshop, and Plancraft, demonstrate NeSyS's consistent advantages over baselines in both WM prediction accuracy and data efficiency.
Abstract:Recent advances in unified multimodal models (UMM) have demonstrated remarkable progress in both understanding and generation tasks. However, whether these two capabilities are genuinely aligned and integrated within a single model remains unclear. To investigate this question, we introduce GapEval, a bidirectional benchmark designed to quantify the gap between understanding and generation capabilities, and quantitatively measure the cognitive coherence of the two "unified" directions. Each question can be answered in both modalities (image and text), enabling a symmetric evaluation of a model's bidirectional inference capability and cross-modal consistency. Experiments reveal a persistent gap between the two directions across a wide range of UMMs with different architectures, suggesting that current models achieve only surface-level unification rather than deep cognitive convergence of the two. To further explore the underlying mechanism, we conduct an empirical study from the perspective of knowledge manipulation to illustrate the underlying limitations. Our findings indicate that knowledge within UMMs often remains disjoint. The capability emergence and knowledge across modalities are unsynchronized, paving the way for further exploration.
Abstract:Time series data is ubiquitous in real-world scenarios and crucial for critical applications ranging from energy management to traffic control. Consequently, the ability to reason over time series is a fundamental skill for generalist models to solve practical problems. However, this dimension is notably absent from existing benchmarks of generalist models. To bridge this gap, we introduce TSRBench, a comprehensive multi-modal benchmark designed to stress-test the full spectrum of time series reasoning capabilities. TSRBench features: i) a diverse set of 4125 problems from 14 domains, and is categorized into 4 major dimensions: Perception, Reasoning, Prediction, and Decision-Making. ii) 15 tasks from the 4 dimensions evaluating essential reasoning capabilities (e.g., numerical reasoning). Through extensive experiments, we evaluated over 30 leading proprietary and open-source LLMs, VLMs, and TSLLMs within TSRBench. Our findings reveal that: i) scaling laws hold for perception and reasoning but break down for prediction; ii) strong reasoning does not guarantee accurate context-aware forecasting, indicating a decoupling between semantic understanding and numerical prediction; and iii) despite the complementary nature of textual and visual represenations of time series as inputs, current multimodal models fail to effectively fuse them for reciprocal performance gains. TSRBench provides a standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance generalist models. Our code and dataset are available at https://tsrbench.github.io/.




Abstract:Large language models increasingly expose reasoning traces, yet their underlying cognitive structure and steps remain difficult to identify and analyze beyond surface-level statistics. We adopt Schoenfeld's Episode Theory as an inductive, intermediate-scale lens and introduce ThinkARM (Anatomy of Reasoning in Models), a scalable framework that explicitly abstracts reasoning traces into functional reasoning steps such as Analysis, Explore, Implement, Verify, etc. When applied to mathematical problem solving by diverse models, this abstraction reveals reproducible thinking dynamics and structural differences between reasoning and non-reasoning models, which are not apparent from token-level views. We further present two diagnostic case studies showing that exploration functions as a critical branching step associated with correctness, and that efficiency-oriented methods selectively suppress evaluative feedback steps rather than uniformly shortening responses. Together, our results demonstrate that episode-level representations make reasoning steps explicit, enabling systematic analysis of how reasoning is structured, stabilized, and altered in modern language models.




Abstract:Accurate estimation of item (question or task) difficulty is critical for educational assessment but suffers from the cold start problem. While Large Language Models demonstrate superhuman problem-solving capabilities, it remains an open question whether they can perceive the cognitive struggles of human learners. In this work, we present a large-scale empirical analysis of Human-AI Difficulty Alignment for over 20 models across diverse domains such as medical knowledge and mathematical reasoning. Our findings reveal a systematic misalignment where scaling up model size is not reliably helpful; instead of aligning with humans, models converge toward a shared machine consensus. We observe that high performance often impedes accurate difficulty estimation, as models struggle to simulate the capability limitations of students even when being explicitly prompted to adopt specific proficiency levels. Furthermore, we identify a critical lack of introspection, as models fail to predict their own limitations. These results suggest that general problem-solving capability does not imply an understanding of human cognitive struggles, highlighting the challenge of using current models for automated difficulty prediction.
Abstract:While many vision-language models (VLMs) are developed to answer well-defined, straightforward questions with highly specified targets, as in most benchmarks, they often struggle in practice with complex open-ended tasks, which usually require multiple rounds of exploration and reasoning in the visual space. Such visual thinking paths not only provide step-by-step exploration and verification as an AI detective but also produce better interpretations of the final answers. However, these paths are challenging to evaluate due to the large exploration space of intermediate steps. To bridge the gap, we develop an evaluation suite, ``Visual Reasoning with multi-step EXploration (V-REX)'', which is composed of a benchmark of challenging visual reasoning tasks requiring native multi-step exploration and an evaluation protocol. V-REX covers rich application scenarios across diverse domains. V-REX casts the multi-step exploratory reasoning into a Chain-of-Questions (CoQ) and disentangles VLMs' capability to (1) Planning: breaking down an open-ended task by selecting a chain of exploratory questions; and (2) Following: answering curated CoQ sequentially to collect information for deriving the final answer. By curating finite options of questions and answers per step, V-REX achieves a reliable quantitative and fine-grained analysis of the intermediate steps. By assessing SOTA proprietary and open-sourced VLMs, we reveal consistent scaling trends, significant differences between planning and following abilities, and substantial room for improvement in multi-step exploratory reasoning.




Abstract:Reconstructing video from brain signals is an important brain decoding task. Existing brain decoding frameworks are primarily built on a subject-dependent paradigm, which requires large amounts of brain data for each subject. However, the expensive cost of collecting brain-video data causes severe data scarcity. Although some cross-subject methods being introduced, they often overfocus with subject-invariant information while neglecting subject-specific information, resulting in slow fine-tune-based adaptation strategy. To achieve fast and data-efficient new subject adaptation, we propose MindCross, a novel cross-subject framework. MindCross's N specific encoders and one shared encoder are designed to extract subject-specific and subject-invariant information, respectively. Additionally, a Top-K collaboration module is adopted to enhance new subject decoding with the knowledge learned from previous subjects' encoders. Extensive experiments on fMRI/EEG-to-video benchmarks demonstrate MindCross's efficacy and efficiency of cross-subject decoding and new subject adaptation using only one model.
Abstract:Sparse Mixture-of-Experts (MoE) have been widely adopted in recent large language models since it can efficiently scale up the model capability without increasing the inference cost. However, evaluations on broad downstream tasks reveal a consistent suboptimality of the routers in existing MoE LLMs, which results in a severe performance gap (e.g., 10-20% in accuracy) to the optimal routing. In this paper, we show that aligning the manifold of routing weights with that of task embedding can effectively reduce the gap and improve MoE LLMs' generalization performance. Our method, "Routing Manifold Alignment (RoMA)", introduces an additional manifold regularization term in the post-training objective and only requires lightweight finetuning of routers (with other parameters frozen). Specifically, the regularization encourages the routing weights of each sample to be close to those of its successful neighbors (whose routing weights lead to correct answers) in a task embedding space. Consequently, samples targeting similar tasks will share similar expert choices across layers. Building such bindings between tasks and experts over different samples is essential to achieve better generalization. Moreover, RoMA demonstrates the advantage of unifying the task understanding (by embedding models) with solution generation (by MoE LLMs). In experiments, we finetune routers in OLMoE, DeepSeekMoE, and Qwen3-MoE using RoMA. Evaluations on diverse benchmarks and extensive comparisons with baselines show the substantial improvement brought by RoMA.