Abstract:In image classification tasks, deep learning models are vulnerable to image distortion. For successful deployment, it is important to identify distortion levels under which the model is usable i.e. its accuracy stays above a stipulated threshold. We refer to this problem as Model Assurance under Image Distortion, and formulate it as a classification task. Given a distortion level, our goal is to predict if the model's accuracy on the set of distorted images is greater than a threshold. We propose a novel classifier based on a Level Set Estimation (LSE) algorithm, which uses the LSE's mean and variance functions to form the classification rule. We further extend our method to a "few sample" setting where we can only acquire few real images to perform the model assurance process. Our idea is to generate extra synthetic images using a novel Conditional Variational Autoencoder model with two new loss functions. We conduct extensive experiments to show that our classification method significantly outperforms strong baselines on five benchmark image datasets.
Abstract:In image classification tasks, deep learning models are vulnerable to image distortions i.e. their accuracy significantly drops if the input images are distorted. An image-classifier is considered "reliable" if its accuracy on distorted images is above a user-specified threshold. For a quality control purpose, it is important to predict if the image-classifier is unreliable/reliable under a distortion level. In other words, we want to predict whether a distortion level makes the image-classifier "non-reliable" or "reliable". Our solution is to construct a training set consisting of distortion levels along with their "non-reliable" or "reliable" labels, and train a machine learning predictive model (called distortion-classifier) to classify unseen distortion levels. However, learning an effective distortion-classifier is a challenging problem as the training set is highly imbalanced. To address this problem, we propose two Gaussian process based methods to rebalance the training set. We conduct extensive experiments to show that our method significantly outperforms several baselines on six popular image datasets.
Abstract:Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems or software applications via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse platforms. Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods. We propose a unified framework that delineates their perception, reasoning, planning, and acting capabilities. Furthermore, we identify important open challenges and discuss key future directions. Finally, this work serves as a basis for practitioners and researchers to gain an intuitive understanding of current progress, techniques, benchmarks, and critical open problems that remain to be addressed.
Abstract:Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities, such as text, images, and audio, to perform complex tasks with high accuracy. This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications. We propose an intuitive taxonomy for categorizing the techniques used to personalize MLLMs to individual users, and discuss the techniques accordingly. Furthermore, we discuss how such techniques can be combined or adapted when appropriate, highlighting their advantages and underlying rationale. We also provide a succinct summary of personalization tasks investigated in existing research, along with the evaluation metrics commonly used. Additionally, we summarize the datasets that are useful for benchmarking personalized MLLMs. Finally, we outline critical open challenges. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and advance the development of personalized multimodal large language models.
Abstract:Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in \href{https://github.com/adobe-research/dynasaur}{https://github.com/adobe-research/dynasaur}.
Abstract:While most generative models show achievements in image data generation, few are developed for tabular data generation. Recently, due to success of large language models (LLM) in diverse tasks, they have also been used for tabular data generation. However, these methods do not capture the correct correlation between the features and the target variable, hindering their applications in downstream predictive tasks. To address this problem, we propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data. First, we propose a novel permutation strategy for the input data in the fine-tuning phase. Second, we propose a feature-conditional sampling approach to generate synthetic samples. Finally, we generate the labels by constructing prompts based on the generated samples to query our fine-tuned LLM. Our extensive experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks. It also produces highly realistic synthetic samples in terms of quality and diversity. More importantly, classifiers trained with our synthetic data can even compete with classifiers trained with the original data on half of the benchmark datasets, which is a significant achievement in tabular data generation.
Abstract:The objective of active level set estimation for a black-box function is to precisely identify regions where the function values exceed or fall below a specified threshold by iteratively performing function evaluations to gather more information about the function. This becomes particularly important when function evaluations are costly, drastically limiting our ability to acquire large datasets. A promising way to sample-efficiently model the black-box function is by incorporating prior knowledge from a related function. However, this approach risks slowing down the estimation task if the prior knowledge is irrelevant or misleading. In this paper, we present a novel transfer learning method for active level set estimation that safely integrates a given prior knowledge while constantly adjusting it to guarantee a robust performance of a level set estimation algorithm even when the prior knowledge is irrelevant. We theoretically analyze this algorithm to show that it has a better level set convergence compared to standard transfer learning approaches that do not make any adjustment to the prior. Additionally, extensive experiments across multiple datasets confirm the effectiveness of our method when applied to various different level set estimation algorithms as well as different transfer learning scenarios.
Abstract:Training with larger mini-batches improves the performance and convergence rate of training machine learning models. However, training with large mini-batches becomes prohibitive for Large Language Models (LLMs) with billions of parameters, due to the large GPU memory requirement. To address this problem, we propose finding small mini-batches that simulate the dynamics of training with larger mini-batches. Specifically, we formulate selecting smaller mini-batches of examples that closely capture gradients of large mini-batches as a submodular maximization problem. Nevertheless, the very large dimensionality of the gradients makes the problem very challenging to solve. To address this, we leverage ideas from zeroth-order optimization and neural network pruning to find lower-dimensional gradient estimates that allow finding high-quality subsets effectively with a limited amount of memory. We prove the superior convergence rate of training on the small mini-batches found by our method and empirically show its effectiveness. Our method can effectively reduce the memory requirement by 2x and speed up training by 1.3x, as we confirm for fine-tuning Phi-2 on MathInstruct. Our method can be easily stacked with LoRA and other memory-efficient methods to further reduce the memory requirements of training LLMs.
Abstract:GPT-4V's purported strong multimodal abilities raise interests in using it to automate radiology report writing, but there lacks thorough evaluations. In this work, we perform a systematic evaluation of GPT-4V in generating radiology reports on two chest X-ray report datasets: MIMIC-CXR and IU X-Ray. We attempt to directly generate reports using GPT-4V through different prompting strategies and find that it fails terribly in both lexical metrics and clinical efficacy metrics. To understand the low performance, we decompose the task into two steps: 1) the medical image reasoning step of predicting medical condition labels from images; and 2) the report synthesis step of generating reports from (groundtruth) conditions. We show that GPT-4V's performance in image reasoning is consistently low across different prompts. In fact, the distributions of model-predicted labels remain constant regardless of which groundtruth conditions are present on the image, suggesting that the model is not interpreting chest X-rays meaningfully. Even when given groundtruth conditions in report synthesis, its generated reports are less correct and less natural-sounding than a finetuned LLaMA-2. Altogether, our findings cast doubt on the viability of using GPT-4V in a radiology workflow.
Abstract:Large language models (LLMs), despite their breakthroughs on many challenging benchmark tasks, lean to generate verbose responses and lack the controllability of output complexity, which is usually preferred by human users in practice. In this paper, we study how to precisely control multiple linguistic complexities of LLM output by finetuning using off-the-shelf data. To this end, we propose multi-control tuning (MCTune), which includes multiple linguistic complexity values of ground-truth responses as controls in the input for instruction tuning. We finetune LLaMA2-7B on Alpaca-GPT4 and WizardLM datasets. Evaluations on widely used benchmarks demonstrate that our method does not only improve LLMs' multi-complexity controllability substantially but also retains or even enhances the quality of the responses as a side benefit.