Abstract:Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems or software applications via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse platforms. Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods. We propose a unified framework that delineates their perception, reasoning, planning, and acting capabilities. Furthermore, we identify important open challenges and discuss key future directions. Finally, this work serves as a basis for practitioners and researchers to gain an intuitive understanding of current progress, techniques, benchmarks, and critical open problems that remain to be addressed.
Abstract:Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities, such as text, images, and audio, to perform complex tasks with high accuracy. This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications. We propose an intuitive taxonomy for categorizing the techniques used to personalize MLLMs to individual users, and discuss the techniques accordingly. Furthermore, we discuss how such techniques can be combined or adapted when appropriate, highlighting their advantages and underlying rationale. We also provide a succinct summary of personalization tasks investigated in existing research, along with the evaluation metrics commonly used. Additionally, we summarize the datasets that are useful for benchmarking personalized MLLMs. Finally, we outline critical open challenges. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and advance the development of personalized multimodal large language models.
Abstract:Offline evaluation of LLMs is crucial in understanding their capacities, though current methods remain underexplored in existing research. In this work, we focus on the offline evaluation of the chain-of-thought capabilities and show how to optimize LLMs based on the proposed evaluation method. To enable offline feedback with rich knowledge and reasoning paths, we use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts. Due to the heterogeneity between LLM reasoning and KG structures, direct interaction and feedback from KGs on LLM behavior are challenging, as they require accurate entity linking and grounding of LLM-generated chains of thought in the KG. To address the above challenge, we propose an offline chain-of-thought evaluation framework, OCEAN, which models chain-of-thought reasoning in LLMs as an MDP and evaluate the policy's alignment with KG preference modeling. To overcome the reasoning heterogeneity and grounding problems, we leverage on-policy KG exploration and RL to model a KG policy that generates token-level likelihood distributions for LLM-generated chain-of-thought reasoning paths, simulating KG reasoning preference. Then we incorporate the knowledge-graph feedback on the validity and alignment of the generated reasoning paths into inverse propensity scores and propose KG-IPS estimator. Theoretically, we prove the unbiasedness of the proposed KG-IPS estimator and provide a lower bound on its variance. With the off-policy evaluated value function, we can directly enable off-policy optimization to further enhance chain-of-thought alignment. Our empirical study shows that OCEAN can be efficiently optimized for generating chain-of-thought reasoning paths with higher estimated values without affecting LLMs' general abilities in downstream tasks or their internal knowledge.
Abstract:Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications. Despite the importance and recent progress, most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems. In this work, we bridge the gap between these two separate main directions for the first time by introducing a taxonomy for personalized LLM usage and summarizing the key differences and challenges. We provide a formalization of the foundations of personalized LLMs that consolidates and expands notions of personalization of LLMs, defining and discussing novel facets of personalization, usage, and desiderata of personalized LLMs. We then unify the literature across these diverse fields and usage scenarios by proposing systematic taxonomies for the granularity of personalization, personalization techniques, datasets, evaluation methods, and applications of personalized LLMs. Finally, we highlight challenges and important open problems that remain to be addressed. By unifying and surveying recent research using the proposed taxonomies, we aim to provide a clear guide to the existing literature and different facets of personalization in LLMs, empowering both researchers and practitioners.
Abstract:Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.
Abstract:Large language models (LLMs) have been used to generate query expansions augmenting original queries for improving information search. Recent studies also explore providing LLMs with initial retrieval results to generate query expansions more grounded to document corpus. However, these methods mostly focus on enhancing textual similarities between search queries and target documents, overlooking document relations. For queries like "Find me a highly rated camera for wildlife photography compatible with my Nikon F-Mount lenses", existing methods may generate expansions that are semantically similar but structurally unrelated to user intents. To handle such semi-structured queries with both textual and relational requirements, in this paper we propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG). To further address the limitation of entity-based scoring in existing KG-based methods, we leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR). Extensive experiments on three datasets of diverse domains show the advantages of our method compared against state-of-the-art baselines on textual and relational semi-structured retrieval.
Abstract:Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (\textbf{CoLLAP}) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.
Abstract:Despite significant advancements in large language models (LLMs), the rapid and frequent integration of small-scale experiences, such as interactions with surrounding objects, remains a substantial challenge. Two critical factors in assimilating these experiences are (1) Efficacy: the ability to accurately remember recent events; (2) Retention: the capacity to recall long-past experiences. Current methods either embed experiences within model parameters using continual learning, model editing, or knowledge distillation techniques, which often struggle with rapid updates and complex interactions, or rely on external storage to achieve long-term retention, thereby increasing storage requirements. In this paper, we propose SELF-PARAM (Self-Updatable Large Language Models with Parameter Integration). SELF-PARAM requires no extra parameters while ensuring near-optimal efficacy and long-term retention. Our method employs a training objective that minimizes the Kullback-Leibler (KL) divergence between the predictions of an original model (with access to contextual information) and a target model (without such access). By generating diverse question-answer pairs related to the knowledge and minimizing the KL divergence across this dataset, we update the target model to internalize the knowledge seamlessly within its parameters. Evaluations on question-answering and conversational recommendation tasks demonstrate that SELF-PARAM significantly outperforms existing methods, even when accounting for non-zero storage requirements. This advancement paves the way for more efficient and scalable integration of experiences in large language models by embedding knowledge directly into model parameters.
Abstract:Existing music captioning methods are limited to generating concise global descriptions of short music clips, which fail to capture fine-grained musical characteristics and time-aware musical changes. To address these limitations, we propose FUTGA, a model equipped with fined-grained music understanding capabilities through learning from generative augmentation with temporal compositions. We leverage existing music caption datasets and large language models (LLMs) to synthesize fine-grained music captions with structural descriptions and time boundaries for full-length songs. Augmented by the proposed synthetic dataset, FUTGA is enabled to identify the music's temporal changes at key transition points and their musical functions, as well as generate detailed descriptions for each music segment. We further introduce a full-length music caption dataset generated by FUTGA, as the augmentation of the MusicCaps and the Song Describer datasets. We evaluate the automatically generated captions on several downstream tasks, including music generation and retrieval. The experiments demonstrate the quality of the generated captions and the better performance in various downstream tasks achieved by the proposed music captioning approach. Our code and datasets can be found in \href{https://huggingface.co/JoshuaW1997/FUTGA}{\textcolor{blue}{https://huggingface.co/JoshuaW1997/FUTGA}}.
Abstract:Instruction tuning in multimodal large language models (MLLMs) aims to smoothly integrate a backbone LLM with a pre-trained feature encoder for downstream tasks. The major challenge is how to efficiently find the synergy through cooperative learning where LLMs adapt their reasoning abilities in downstream tasks while feature encoders adjust their encoding to provide more relevant modal information. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find unbalanced learning between the two components, i.e., the feature encoder and the LLM, can cause diminishing learning gradients that slow the model convergence and often lead to sub-optimal results due to insufficient learning. Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance, based on which we further design a dynamic learning scheduler that better coordinates the learning. In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs considering the learning state of each model component, which potentially prevents each component from gradient diminishing and enables a more accurate estimation of the learning balance coefficient. We conduct experiments with multiple LLM backbones and feature encoders, where our techniques are model-agnostic and can be generically integrated with various MLLM backbones. Experiment results on multiple downstream tasks and modalities in vision and audio, demonstrate the proposed method's better efficiency and effectiveness in MLLM instruction tuning.