Abstract:Generalization across Agentic tool-calling environments remains a key unsolved challenge in developing reliable agentic reasoning systems. While large language models (LLMs) demonstrate strong performance on isolated benchmarks, their ability to transfer reasoning strategies and co-ordinate tools across diverse domains is poorly understood. In this work, we conduct a large-scale evaluation of state-of-the-art LLMs on multiple tool-calling benchmarksBFCL v3, TauBench, Tau2Bench, and AceBenchand introduce MAVEN (Math & Physics Adversarial Verification & Evaluation Network), a new out of distribution (OOD) benchmark designed to stress-test multi-step reasoning through explicit verification and adversarial task composition. Our results show that most current models achieve below 50% accuracy on MAVEN, revealing a significant generalization gap across tool-use settings. To address this, we present the CoreThink Agentic Reasoner, a framework that augments LLMs with a lightweight symbolic reasoning layer for structured decomposition and adaptive tool orchestration. Without additional training, it generalizes across all benchmarks, achieving state-of-the-art performance with 530% improvements over existing baselines at roughly one-tenth the computational cost.
Abstract:Controllable music generation remains a significant challenge, with existing methods often requiring model retraining or introducing audible artifacts. We introduce MusicRFM, a framework that adapts Recursive Feature Machines (RFMs) to enable fine-grained, interpretable control over frozen, pre-trained music models by directly steering their internal activations. RFMs analyze a model's internal gradients to produce interpretable "concept directions", or specific axes in the activation space that correspond to musical attributes like notes or chords. We first train lightweight RFM probes to discover these directions within MusicGen's hidden states; then, during inference, we inject them back into the model to guide the generation process in real-time without per-step optimization. We present advanced mechanisms for this control, including dynamic, time-varying schedules and methods for the simultaneous enforcement of multiple musical properties. Our method successfully navigates the trade-off between control and generation quality: we can increase the accuracy of generating a target musical note from 0.23 to 0.82, while text prompt adherence remains within approximately 0.02 of the unsteered baseline, demonstrating effective control with minimal impact on prompt fidelity. We release code to encourage further exploration on RFMs in the music domain.
Abstract:The rapid evolution of large language models (LLMs) and the real world has outpaced the static nature of widely used evaluation benchmarks, raising concerns about their reliability for evaluating LLM factuality. While substantial works continue to rely on the popular but old benchmarks, their temporal misalignment with real-world facts and modern LLMs, and their effects on LLM factuality evaluation remain underexplored. Therefore, in this work, we present a systematic investigation of this issue by examining five popular factuality benchmarks and eight LLMs released across different years. An up-to-date fact retrieval pipeline and three metrics are tailored to quantify benchmark aging and its impact on LLM factuality evaluation. Experimental results and analysis illustrate that a considerable portion of samples in the widely used factuality benchmarks are outdated, leading to unreliable assessments of LLM factuality. We hope our work can provide a testbed to assess the reliability of a benchmark for LLM factuality evaluation and inspire more research on the benchmark aging issue. Codes are available in https://github.com/JiangXunyi/BenchAge.
Abstract:Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various vision-language tasks. However, their reasoning abilities in the multimodal symbolic music domain remain largely unexplored. We introduce WildScore, the first in-the-wild multimodal symbolic music reasoning and analysis benchmark, designed to evaluate MLLMs' capacity to interpret real-world music scores and answer complex musicological queries. Each instance in WildScore is sourced from genuine musical compositions and accompanied by authentic user-generated questions and discussions, capturing the intricacies of practical music analysis. To facilitate systematic evaluation, we propose a systematic taxonomy, comprising both high-level and fine-grained musicological ontologies. Furthermore, we frame complex music reasoning as multiple-choice question answering, enabling controlled and scalable assessment of MLLMs' symbolic music understanding. Empirical benchmarking of state-of-the-art MLLMs on WildScore reveals intriguing patterns in their visual-symbolic reasoning, uncovering both promising directions and persistent challenges for MLLMs in symbolic music reasoning and analysis. We release the dataset and code.
Abstract:Large Language Model (LLM) agents are commonly tuned with supervised finetuning on ReAct-style expert trajectories or preference optimization over pairwise rollouts. Most of these methods focus on imitating specific expert behaviors or promoting chosen reasoning thoughts and actions over rejected ones. However, without reasoning and comparing over alternatives actions, LLM agents finetuned with these methods may over-commit towards seemingly plausible but suboptimal actions due to limited action space exploration. To address this, in this paper we propose Self-taught ActioN Deliberation (SAND) framework, enabling LLM agents to explicitly deliberate over candidate actions before committing to one. To tackle the challenges of when and what to deliberate given large action space and step-level action evaluation, we incorporate self-consistency action sampling and execution-guided action critique to help synthesize step-wise action deliberation thoughts using the base model of the LLM agent. In an iterative manner, the deliberation trajectories are then used to finetune the LLM agent itself. Evaluating on two representative interactive agent tasks, SAND achieves an average 20% improvement over initial supervised finetuning and also outperforms state-of-the-art agent tuning approaches.
Abstract:Despite recent advancements in music generation systems, their application in film production remains limited, as they struggle to capture the nuances of real-world filmmaking, where filmmakers consider multiple factors-such as visual content, dialogue, and emotional tone-when selecting or composing music for a scene. This limitation primarily stems from the absence of comprehensive datasets that integrate these elements. To address this gap, we introduce Open Screen Sound Library (OSSL), a dataset consisting of movie clips from public domain films, totaling approximately 36.5 hours, paired with high-quality soundtracks and human-annotated mood information. To demonstrate the effectiveness of our dataset in improving the performance of pre-trained models on film music generation tasks, we introduce a new video adapter that enhances an autoregressive transformer-based text-to-music model by adding video-based conditioning. Our experimental results demonstrate that our proposed approach effectively enhances MusicGen-Medium in terms of both objective measures of distributional and paired fidelity, and subjective compatibility in mood and genre. The dataset and code are available at https://havenpersona.github.io/ossl-v1.
Abstract:Semantic ID-based recommendation models tokenize each item into a small number of discrete tokens that preserve specific semantics, leading to better performance, scalability, and memory efficiency. While recent models adopt a generative approach, they often suffer from inefficient inference due to the reliance on resource-intensive beam search and multiple forward passes through the neural sequence model. As a result, the length of semantic IDs is typically restricted (e.g. to just 4 tokens), limiting their expressiveness. To address these challenges, we propose RPG, a lightweight framework for semantic ID-based recommendation. The key idea is to produce unordered, long semantic IDs, allowing the model to predict all tokens in parallel. We train the model to predict each token independently using a multi-token prediction loss, directly integrating semantics into the learning objective. During inference, we construct a graph connecting similar semantic IDs and guide decoding to avoid generating invalid IDs. Experiments show that scaling up semantic ID length to 64 enables RPG to outperform generative baselines by an average of 12.6% on the NDCG@10, while also improving inference efficiency. Code is available at: https://github.com/facebookresearch/RPG_KDD2025.
Abstract:Short videos are an effective tool for promoting contents and improving knowledge accessibility. While existing extractive video summarization methods struggle to produce a coherent narrative, existing abstractive methods cannot `quote' from the input videos, i.e., inserting short video clips in their outputs. In this work, we explore novel video editing models for generating shorts that feature a coherent narrative with embedded video insertions extracted from a long input video. We propose a novel retrieval-embedded generation framework that allows a large language model to quote multimodal resources while maintaining a coherent narrative. Our proposed REGen system first generates the output story script with quote placeholders using a finetuned large language model, and then uses a novel retrieval model to replace the quote placeholders by selecting a video clip that best supports the narrative from a pool of candidate quotable video clips. We examine the proposed method on the task of documentary teaser generation, where short interview insertions are commonly used to support the narrative of a documentary. Our objective evaluations show that the proposed method can effectively insert short video clips while maintaining a coherent narrative. In a subjective survey, we show that our proposed method outperforms existing abstractive and extractive approaches in terms of coherence, alignment, and realism in teaser generation.
Abstract:Graph-based recommendation systems are effective at modeling collaborative patterns but often suffer from two limitations: overreliance on low-pass filtering, which suppresses user-specific signals, and omission of sequential dynamics in graph construction. We introduce GSPRec, a graph spectral model that integrates temporal transitions through sequentially-informed graph construction and applies frequency-aware filtering in the spectral domain. GSPRec encodes item transitions via multi-hop diffusion to enable the use of symmetric Laplacians for spectral processing. To capture user preferences, we design a dual-filtering mechanism: a Gaussian bandpass filter to extract mid-frequency, user-level patterns, and a low-pass filter to retain global trends. Extensive experiments on four public datasets show that GSPRec consistently outperforms baselines, with an average improvement of 6.77% in NDCG@10. Ablation studies show the complementary benefits of both sequential graph augmentation and bandpass filtering.
Abstract:Text-to-audio systems, while increasingly performant, are slow at inference time, thus making their latency unpractical for many creative applications. We present Adversarial Relativistic-Contrastive (ARC) post-training, the first adversarial acceleration algorithm for diffusion/flow models not based on distillation. While past adversarial post-training methods have struggled to compare against their expensive distillation counterparts, ARC post-training is a simple procedure that (1) extends a recent relativistic adversarial formulation to diffusion/flow post-training and (2) combines it with a novel contrastive discriminator objective to encourage better prompt adherence. We pair ARC post-training with a number optimizations to Stable Audio Open and build a model capable of generating $\approx$12s of 44.1kHz stereo audio in $\approx$75ms on an H100, and $\approx$7s on a mobile edge-device, the fastest text-to-audio model to our knowledge.