Abstract:Recent advances in large language models (LLMs) provide new opportunities for context understanding in virtual reality (VR). However, VR contexts are often highly localized and personalized, limiting the effectiveness of general-purpose LLMs. To address this challenge, we present RAG-VR, the first 3D question-answering system for VR that incorporates retrieval-augmented generation (RAG), which augments an LLM with external knowledge retrieved from a localized knowledge database to improve the answer quality. RAG-VR includes a pipeline for extracting comprehensive knowledge about virtual environments and user conditions for accurate answer generation. To ensure efficient retrieval, RAG-VR offloads the retrieval process to a nearby edge server and uses only essential information during retrieval. Moreover, we train the retriever to effectively distinguish among relevant, irrelevant, and hard-to-differentiate information in relation to questions. RAG-VR improves answer accuracy by 17.9%-41.8% and reduces end-to-end latency by 34.5%-47.3% compared with two baseline systems.
Abstract:Counterfactual medical image generation enables clinicians to explore clinical hypotheses, such as predicting disease progression, facilitating their decision-making. While existing methods can generate visually plausible images from disease progression prompts, they produce silent predictions that lack interpretation to verify how the generation reflects the hypothesized progression -- a critical gap for medical applications that require traceable reasoning. In this paper, we propose Interpretable Counterfactual Generation (ICG), a novel task requiring the joint generation of counterfactual images that reflect the clinical hypothesis and interpretation texts that outline the visual changes induced by the hypothesis. To enable ICG, we present ICG-CXR, the first dataset pairing longitudinal medical images with hypothetical progression prompts and textual interpretations. We further introduce ProgEmu, an autoregressive model that unifies the generation of counterfactual images and textual interpretations. We demonstrate the superiority of ProgEmu in generating progression-aligned counterfactuals and interpretations, showing significant potential in enhancing clinical decision support and medical education. Project page: https://progemu.github.io.
Abstract:Widely observed data scaling laws, in which error falls off as a power of the training size, demonstrate the diminishing returns of unselective data expansion. Hence, data governance is proposed to downsize datasets through pruning non-informative samples. Yet, isolating the impact of a specific sample on overall model performance is challenging, due to the vast computation required for tryout all sample combinations. Current data governors circumvent this complexity by estimating sample contributions through heuristic-derived scalar scores, thereby discarding low-value ones. Despite thorough sample sieving, retained samples contain substantial undesired tokens intrinsically, underscoring the potential for further compression and purification. In this work, we upgrade data governance from a 'sieving' approach to a 'juicing' one. Instead of scanning for least-flawed samples, our dual-branch DataJuicer applies finer-grained intra-sample governance. It squeezes out informative tokens and boosts image-text alignments. Specifically, the vision branch retains salient image patches and extracts relevant object classes, while the text branch incorporates these classes to enhance captions. Consequently, DataJuicer yields more refined datasets through finer-grained governance. Extensive experiments across datasets demonstrate that DataJuicer significantly outperforms existing DataSieve in image-text retrieval, classification, and dense visual reasoning.
Abstract:Blind dehazed image quality assessment (BDQA), which aims to accurately predict the visual quality of dehazed images without any reference information, is essential for the evaluation, comparison, and optimization of image dehazing algorithms. Existing learning-based BDQA methods have achieved remarkable success, while the small scale of DQA datasets limits their performance. To address this issue, in this paper, we propose to adapt Contrastive Language-Image Pre-Training (CLIP), pre-trained on large-scale image-text pairs, to the BDQA task. Specifically, inspired by the fact that the human visual system understands images based on hierarchical features, we take global and local information of the dehazed image as the input of CLIP. To accurately map the input hierarchical information of dehazed images into the quality score, we tune both the vision branch and language branch of CLIP with prompt learning. Experimental results on two authentic DQA datasets demonstrate that our proposed approach, named CLIP-DQA, achieves more accurate quality predictions over existing BDQA methods. The code is available at https://github.com/JunFu1995/CLIP-DQA.
Abstract:Recovery rate prediction plays a pivotal role in bond investment strategies, enhancing risk assessment, optimizing portfolio allocation, improving pricing accuracy, and supporting effective credit risk management. However, forecasting faces challenges like high-dimensional features, small sample sizes, and overfitting. We propose a hybrid Quantum Machine Learning model incorporating Parameterized Quantum Circuits (PQC) within a neural network framework. PQCs inherently preserve unitarity, avoiding computationally costly orthogonality constraints, while amplitude encoding enables exponential data compression, reducing qubit requirements logarithmically. Applied to a global dataset of 1,725 observations (1996-2023), our method achieved superior accuracy (RMSE 0.228) compared to classical neural networks (0.246) and quantum models with angle encoding (0.242), with efficient computation times. This work highlights the potential of hybrid quantum-classical architectures in advancing recovery rate forecasting.
Abstract:Recent innovations in light sheet microscopy, paired with developments in tissue clearing techniques, enable the 3D imaging of large mammalian tissues with cellular resolution. Combined with the progress in large-scale data analysis, driven by deep learning, these innovations empower researchers to rapidly investigate the morphological and functional properties of diverse biological samples. Segmentation, a crucial preliminary step in the analysis process, can be automated using domain-specific deep learning models with expert-level performance. However, these models exhibit high sensitivity to domain shifts, leading to a significant drop in accuracy when applied to data outside their training distribution. To address this limitation, and inspired by the recent success of self-supervised learning in training generalizable models, we organized the SELMA3D Challenge during the MICCAI 2024 conference. SELMA3D provides a vast collection of light-sheet images from cleared mice and human brains, comprising 35 large 3D images-each with over 1000^3 voxels-and 315 annotated small patches for finetuning, preliminary testing and final testing. The dataset encompasses diverse biological structures, including vessel-like and spot-like structures. Five teams participated in all phases of the challenge, and their proposed methods are reviewed in this paper. Quantitative and qualitative results from most participating teams demonstrate that self-supervised learning on large datasets improves segmentation model performance and generalization. We will continue to support and extend SELMA3D as an inaugural MICCAI challenge focused on self-supervised learning for 3D microscopy image segmentation.
Abstract:We propose Group Shapley, a metric that extends the classical individual-level Shapley value framework to evaluate the importance of feature groups, addressing the structured nature of predictors commonly found in business and economic data. More importantly, we develop a significance testing procedure based on a three-cumulant chi-square approximation and establish the asymptotic properties of the test statistics for Group Shapley values. Our approach can effectively handle challenging scenarios, including sparse or skewed distributions and small sample sizes, outperforming alternative tests such as the Wald test. Simulations confirm that the proposed test maintains robust empirical size and demonstrates enhanced power under diverse conditions. To illustrate the method's practical relevance in advancing Explainable AI, we apply our framework to bond recovery rate predictions using a global dataset (1996-2023) comprising 2,094 observations and 98 features, grouped into 16 subgroups and five broader categories: bond characteristics, firm fundamentals, industry-specific factors, market-related variables, and macroeconomic indicators. Our results identify the market-related variables group as the most influential. Furthermore, Lorenz curves and Gini indices reveal that Group Shapley assigns feature importance more equitably compared to individual Shapley values.
Abstract:Facial attractiveness prediction (FAP) has long been an important computer vision task, which could be widely applied in live streaming for facial retouching, content recommendation, etc. However, previous FAP datasets are either small, closed-source, or lack diversity. Moreover, the corresponding FAP models exhibit limited generalization and adaptation ability. To overcome these limitations, in this paper we present LiveBeauty, the first large-scale live-specific FAP dataset, in a more challenging application scenario, i.e., live streaming. 10,000 face images are collected from a live streaming platform directly, with 200,000 corresponding attractiveness annotations obtained from a well-devised subjective experiment, making LiveBeauty the largest open-access FAP dataset in the challenging live scenario. Furthermore, a multi-modal FAP method is proposed to measure the facial attractiveness in live streaming. Specifically, we first extract holistic facial prior knowledge and multi-modal aesthetic semantic features via a Personalized Attractiveness Prior Module (PAPM) and a Multi-modal Attractiveness Encoder Module (MAEM), respectively, then integrate the extracted features through a Cross-Modal Fusion Module (CMFM). Extensive experiments conducted on both LiveBeauty and other open-source FAP datasets demonstrate that our proposed method achieves state-of-the-art performance. Dataset will be available soon.
Abstract:Membership inference attacks have emerged as a significant privacy concern in the training of deep learning models, where attackers can infer whether a data point was part of the training set based on the model's outputs. To address this challenge, we propose a novel defense mechanism, AdaMixup. AdaMixup employs adaptive mixup techniques to enhance the model's robustness against membership inference attacks by dynamically adjusting the mixup strategy during training. This method not only improves the model's privacy protection but also maintains high performance. Experimental results across multiple datasets demonstrate that AdaMixup significantly reduces the risk of membership inference attacks while achieving a favorable trade-off between defensive efficiency and model accuracy. This research provides an effective solution for data privacy protection and lays the groundwork for future advancements in mixup training methods.
Abstract:The COVID-19 vaccine development, manufacturing, transportation, and administration proved an extreme logistics operation of global magnitude. Global vaccination levels, however, remain a key concern in preventing the emergence of new strains and minimizing the impact of the pandemic's disruption of daily life. In this paper, country-level vaccination rates are analyzed through a queuing framework to extract service rates that represent the practical capacity of a country to administer vaccines. These rates are further characterized through regression and interpretable machine learning methods with country-level demographic, governmental, and socio-economic variates. Model results show that participation in multi-governmental collaborations such as COVAX may improve the ability to vaccinate. Similarly, improved transportation and accessibility variates such as roads per area for low-income countries and rail lines per area for high-income countries can improve rates. It was also found that for low-income countries specifically, improvements in basic and health infrastructure (as measured through spending on healthcare, number of doctors and hospital beds per 100k, population percent with access to electricity, life expectancy, and vehicles per 1000 people) resulted in higher vaccination rates. Of the high-income countries, those with larger 65-plus populations struggled to vaccinate at high rates, indicating potential accessibility issues for the elderly. This study finds that improving basic and health infrastructure, focusing on accessibility in the last mile, particularly for the elderly, and fostering global partnerships can improve logistical operations of such a scale. Such structural impediments and inequities in global health care must be addressed in preparation for future global public health crises.