Abstract:At a cocktail party, humans exhibit an impressive ability to direct their attention. The auditory attention detection (AAD) approach seeks to identify the attended speaker by analyzing brain signals, such as EEG signals. However, current AAD algorithms overlook the spatial distribution information within EEG signals and lack the ability to capture long-range latent dependencies, limiting the model's ability to decode brain activity. To address these issues, this paper proposes a dual attention refinement network with spatiotemporal construction for AAD, named DARNet, which consists of the spatiotemporal construction module, dual attention refinement module, and feature fusion \& classifier module. Specifically, the spatiotemporal construction module aims to construct more expressive spatiotemporal feature representations, by capturing the spatial distribution characteristics of EEG signals. The dual attention refinement module aims to extract different levels of temporal patterns in EEG signals and enhance the model's ability to capture long-range latent dependencies. The feature fusion \& classifier module aims to aggregate temporal patterns and dependencies from different levels and obtain the final classification results. The experimental results indicate that compared to the state-of-the-art models, DARNet achieves an average classification accuracy improvement of 5.9\% for 0.1s, 4.6\% for 1s, and 3.9\% for 2s on the DTU dataset. While maintaining excellent classification performance, DARNet significantly reduces the number of required parameters. Compared to the state-of-the-art models, DARNet reduces the parameter count by 91\%. Code is available at: https://github.com/fchest/DARNet.git.
Abstract:In recent years, with the maturation of large language model (LLM) technology and the emergence of high-quality programming code datasets, researchers have become increasingly confident in addressing the challenges of program synthesis automatically. However, since most of the training samples for LLMs are unscreened, it is inevitable that LLMs' performance may not align with real-world scenarios, leading to the presence of social bias. To evaluate and quantify the gender bias in code LLMs, we propose a dataset named CodeGenBias (Gender Bias in the Code Generation) and an evaluation metric called FB-Score (Factual Bias Score) based on the actual gender distribution of correlative professions. With the help of CodeGenBias and FB-Score, we evaluate and analyze the gender bias in eight mainstream Code LLMs. Previous work has demonstrated that model editing methods that perform well in knowledge editing have the potential to mitigate social bias in LLMs. Therefore, we develop a model editing approach named MG-Editing (Multi-Granularity model Editing), which includes the locating and editing phases. Our model editing method MG-Editing can be applied at five different levels of model parameter granularity: full parameters level, layer level, module level, row level, and neuron level. Extensive experiments not only demonstrate that our MG-Editing can effectively mitigate the gender bias in code LLMs while maintaining their general code generation capabilities, but also showcase its excellent generalization. At the same time, the experimental results show that, considering both the gender bias of the model and its general code generation capability, MG-Editing is most effective when applied at the row and neuron levels of granularity.
Abstract:Sequential decision-making refers to algorithms that take into account the dynamics of the environment, where early decisions affect subsequent decisions. With large language models (LLMs) demonstrating powerful capabilities between tasks, we can't help but ask: Can Current LLMs Effectively Make Sequential Decisions? In order to answer this question, we propose the UNO Arena based on the card game UNO to evaluate the sequential decision-making capability of LLMs and explain in detail why we choose UNO. In UNO Arena, We evaluate the sequential decision-making capability of LLMs dynamically with novel metrics based Monte Carlo methods. We set up random players, DQN-based reinforcement learning players, and LLM players (e.g. GPT-4, Gemini-pro) for comparison testing. Furthermore, in order to improve the sequential decision-making capability of LLMs, we propose the TUTRI player, which can involves having LLMs reflect their own actions wtih the summary of game history and the game strategy. Numerous experiments demonstrate that the TUTRI player achieves a notable breakthrough in the performance of sequential decision-making compared to the vanilla LLM player.
Abstract:While large language models (LLMs) excel in many domains, their complexity and scale challenge deployment in resource-limited environments. Current compression techniques, such as parameter pruning, often fail to effectively utilize the knowledge from pruned parameters. To address these challenges, we propose Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA), a novel approach that uses manifold learning and the Normalized Pairwise Information Bottleneck (NPIB) measure to merge similar layers, reducing model size while preserving essential performance. We evaluate MKA on multiple benchmark datasets and various LLMs. Our findings show that MKA not only preserves model performance but also achieves substantial compression ratios, outperforming traditional pruning methods. Moreover, when coupled with quantization, MKA delivers even greater compression. Specifically, on the MMLU dataset using the Llama3-8B model, MKA achieves a compression ratio of 43.75% with a minimal performance decrease of only 2.82\%. The proposed MKA method offers a resource-efficient and performance-preserving model compression technique for LLMs.
Abstract:In the telephony scenarios, the fake speech detection (FSD) task to combat speech spoofing attacks is challenging. Data augmentation (DA) methods are considered effective means to address the FSD task in telephony scenarios, typically divided into time domain and frequency domain stages. While each has its advantages, both can result in information loss. To tackle this issue, we propose a novel DA method, Frequency-mix (Freqmix), and introduce the Freqmix knowledge distillation (FKD) to enhance model information extraction and generalization abilities. Specifically, we use Freqmix-enhanced data as input for the teacher model, while the student model's input undergoes time-domain DA method. We use a multi-level feature distillation approach to restore information and improve the model's generalization capabilities. Our approach achieves state-of-the-art results on ASVspoof 2021 LA dataset, showing a 31\% improvement over baseline and performs competitively on ASVspoof 2021 DF dataset.
Abstract:In recent years, knowledge graph completion (KGC) models based on pre-trained language model (PLM) have shown promising results. However, the large number of parameters and high computational cost of PLM models pose challenges for their application in downstream tasks. This paper proposes a progressive distillation method based on masked generation features for KGC task, aiming to significantly reduce the complexity of pre-trained models. Specifically, we perform pre-distillation on PLM to obtain high-quality teacher models, and compress the PLM network to obtain multi-grade student models. However, traditional feature distillation suffers from the limitation of having a single representation of information in teacher models. To solve this problem, we propose masked generation of teacher-student features, which contain richer representation information. Furthermore, there is a significant gap in representation ability between teacher and student. Therefore, we design a progressive distillation method to distill student models at each grade level, enabling efficient knowledge transfer from teachers to students. The experimental results demonstrate that the model in the pre-distillation stage surpasses the existing state-of-the-art methods. Furthermore, in the progressive distillation stage, the model significantly reduces the model parameters while maintaining a certain level of performance. Specifically, the model parameters of the lower-grade student model are reduced by 56.7\% compared to the baseline.
Abstract:Plenty of artifact removal tools and pipelines have been developed to correct the EEG recordings and discover the values below the waveforms. Without visual inspection from the experts, it is susceptible to derive improper preprocessing states, like the insufficient preprocessed EEG (IPE), and the excessive preprocessed EEG (EPE). However, little is known about the impacts of IPE or EPE on the postprocessing in the frequency, spatial and temporal domains, particularly as to the spectra and the functional connectivity (FC) analysis. Here, the clean EEG (CE) was synthesized as the ground truth based on the New-York head model and the multivariate autoregressive model. Later, the IPE and the EPE were simulated by injecting the Gaussian noise and losing the brain activities, respectively. Then, the impacts on postprocessing were quantified by the deviation caused by the IPE or EPE from the CE as to the 4 temporal statistics, the multichannel power, the cross spectra, the dispersion of source imaging, and the properties of scalp EEG network. Lastly, the association analysis was performed between the PaLOSi metric and the varying trends of postprocessing with the evolution of preprocessing states. This study shed light on how the postprocessing outcomes are affected by the preprocessing states and PaLOSi may be a potential effective quality metric.
Abstract:Toward large scale electrophysiology data analysis, many preprocessing pipelines are developed to reject artifacts as the prerequisite step before the downstream analysis. A mainstay of these pipelines is based on the data driven approach -- Independent Component Analysis (ICA). Nevertheless, there is little effort put to the preprocessing quality control. In this paper, attentions to this issue were carefully paid by our observation that after running ICA based preprocessing pipeline: some subjects showed approximately Parallel multichannel Log power Spectra (PaLOS), namely, multichannel power spectra are proportional to each other. Firstly, the presence of PaLOS and its implications to connectivity analysis were described by real instance and simulation; secondly, we built its mathematical model and proposed the PaLOS index (PaLOSi) based on the common principal component analysis to detect its presence; thirdly, the performance of PaLOSi was tested on 30094 cases of EEG from 5 databases. The results showed that 1) the PaLOS implies a sole source which is physiologically implausible. 2) PaLOSi can detect the excessive elimination of brain components and is robust in terms of channel number, electrode layout, reference, and the other factors. 3) PaLOSi can output the channel and frequency wise index to help for in-depth check. This paper presented the PaLOS issue in the quality control step after running the preprocessing pipeline and the proposed PaLOSi may serve as a novel data quality metric in the large-scale automatic preprocessing.
Abstract:Most research in fake audio detection (FAD) focuses on improving performance on standard noise-free datasets. However, in actual situations, there is usually noise interference, which will cause significant performance degradation in FAD systems. To improve the noise robustness, we propose a dual-branch knowledge distillation fake audio detection (DKDFAD) method. Specifically, a parallel data flow of the clean teacher branch and the noisy student branch is designed, and interactive fusion and response-based teacher-student paradigms are proposed to guide the training of noisy data from the data distribution and decision-making perspectives. In the noise branch, speech enhancement is first introduced for denoising, which reduces the interference of strong noise. The proposed interactive fusion combines denoising features and noise features to reduce the impact of speech distortion and seek consistency with the data distribution of clean branch. The teacher-student paradigm maps the student's decision space to the teacher's decision space, making noisy speech behave as clean. In addition, a joint training method is used to optimize the two branches to achieve global optimality. Experimental results based on multiple datasets show that the proposed method performs well in noisy environments and maintains performance in cross-dataset experiments.
Abstract:Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment. Although EEG-based AAD methods have shown promising results in recent years, current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images. This makes it challenging to handle EEG signals, which possess non-Euclidean characteristics. In order to address this problem, this paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input. Specifically, to effectively represent the non-Euclidean properties of EEG signals, dynamical graph convolutional networks are applied to represent the graph structure of EEG signals, which can also extract crucial features related to auditory spatial attention in EEG signals. In addition, to further improve AAD detection performance, self-distillation, consisting of feature distillation and hierarchical distillation strategies at each layer, is integrated. These strategies leverage features and classification results from the deepest network layers to guide the learning of shallow layers. Our experiments are conducted on two publicly available datasets, KUL and DTU. Under a 1-second time window, we achieve results of 90.0\% and 79.6\% accuracy on KUL and DTU, respectively. We compare our DGSD method with competitive baselines, and the experimental results indicate that the detection performance of our proposed DGSD method is not only superior to the best reproducible baseline but also significantly reduces the number of trainable parameters by approximately 100 times.