Abstract:It is widely acknowledged that the epileptic foci can be pinpointed by source localizing interictal epileptic discharges (IEDs) via Magnetoencephalography (MEG). However, manual detection of IEDs, which appear as spikes in MEG data, is extremely labor intensive and requires considerable professional expertise, limiting the broader adoption of MEG technology. Numerous studies have focused on automatic detection of MEG spikes to overcome this challenge, but these efforts often validate their models on synthetic datasets with balanced positive and negative samples. In contrast, clinical MEG data is highly imbalanced, raising doubts on the real-world efficacy of these models. To address this issue, we introduce LV-CadeNet, a Long View feature Convolution-Attention fusion Encoder-Decoder Network, designed for automatic MEG spike detection in real-world clinical scenarios. Beyond addressing the disparity between training data distribution and clinical test data through semi-supervised learning, our approach also mimics human specialists by constructing long view morphological input data. Moreover, we propose an advanced convolution-attention module to extract temporal and spatial features from the input data. LV-CadeNet significantly improves the accuracy of MEG spike detection, boosting it from 42.31\% to 54.88\% on a novel clinical dataset sourced from Sanbo Brain Hospital Capital Medical University. This dataset, characterized by a highly imbalanced distribution of positive and negative samples, accurately represents real-world clinical scenarios.
Abstract:Salient object segmentation aims at distinguishing various salient objects from backgrounds. Despite the lack of semantic consistency, salient objects often have obvious texture and location characteristics in local area. Based on this priori, we propose a novel Local Context Attention Network (LCANet) to generate locally reinforcement feature maps in a uniform representational architecture. The proposed network introduces an Attentional Correlation Filter (ACF) module to generate explicit local attention by calculating the correlation feature map between coarse prediction and global context. Then it is expanded to a Local Context Block(LCB). Furthermore, an one-stage coarse-to-fine structure is implemented based on LCB to adaptively enhance the local context description ability. Comprehensive experiments are conducted on several salient object segmentation datasets, demonstrating the superior performance of the proposed LCANet against the state-of-the-art methods, especially with 0.883 max F-score and 0.034 MAE on DUTS-TE dataset.