Abstract:3D single object tracking (3DSOT) in LiDAR point clouds is a critical task for outdoor perception, enabling real-time perception of object location, orientation, and motion. Despite the impressive performance of current 3DSOT methods, evaluating them on clean datasets inadequately reflects their comprehensive performance, as the adverse weather conditions in real-world surroundings has not been considered. One of the main obstacles is the lack of adverse weather benchmarks for the evaluation of 3DSOT. To this end, this work proposes a challenging benchmark for LiDAR-based 3DSOT in adverse weather, which comprises two synthetic datasets (KITTI-A and nuScenes-A) and one real-world dataset (CADC-SOT) spanning three weather types: rain, fog, and snow. Based on this benchmark, five representative 3D trackers from different tracking frameworks conducted robustness evaluation, resulting in significant performance degradations. This prompts the question: What are the factors that cause current advanced methods to fail on such adverse weather samples? Consequently, we explore the impacts of adverse weather and answer the above question from three perspectives: 1) target distance; 2) template shape corruption; and 3) target shape corruption. Finally, based on domain randomization and contrastive learning, we designed a dual-branch tracking framework for adverse weather, named DRCT, achieving excellent performance in benchmarks.
Abstract:In this study, we delve into the robustness of neural network-based LiDAR point cloud tracking models under adversarial attacks, a critical aspect often overlooked in favor of performance enhancement. These models, despite incorporating advanced architectures like Transformer or Bird's Eye View (BEV), tend to neglect robustness in the face of challenges such as adversarial attacks, domain shifts, or data corruption. We instead focus on the robustness of the tracking models under the threat of adversarial attacks. We begin by establishing a unified framework for conducting adversarial attacks within the context of 3D object tracking, which allows us to thoroughly investigate both white-box and black-box attack strategies. For white-box attacks, we tailor specific loss functions to accommodate various tracking paradigms and extend existing methods such as FGSM, C\&W, and PGD to the point cloud domain. In addressing black-box attack scenarios, we introduce a novel transfer-based approach, the Target-aware Perturbation Generation (TAPG) algorithm, with the dual objectives of achieving high attack performance and maintaining low perceptibility. This method employs a heuristic strategy to enforce sparse attack constraints and utilizes random sub-vector factorization to bolster transferability. Our experimental findings reveal a significant vulnerability in advanced tracking methods when subjected to both black-box and white-box attacks, underscoring the necessity for incorporating robustness against adversarial attacks into the design of LiDAR point cloud tracking models. Notably, compared to existing methods, the TAPG also strikes an optimal balance between the effectiveness of the attack and the concealment of the perturbations.
Abstract:Learning the skill of human bimanual grasping can extend the capabilities of robotic systems when grasping large or heavy objects. However, it requires a much larger search space for grasp points than single-hand grasping and numerous bimanual grasping annotations for network learning, making both data-driven or analytical grasping methods inefficient and insufficient. We propose a framework for bimanual grasp saliency learning that aims to predict the contact points for bimanual grasping based on existing human single-handed grasping data. We learn saliency corresponding vectors through minimal bimanual contact annotations that establishes correspondences between grasp positions of both hands, capable of eliminating the need for training a large-scale bimanual grasp dataset. The existing single-handed grasp saliency value serves as the initial value for bimanual grasp saliency, and we learn a saliency adjusted score that adds the initial value to obtain the final bimanual grasp saliency value, capable of predicting preferred bimanual grasp positions from single-handed grasp saliency. We also introduce a physics-balance loss function and a physics-aware refinement module that enables physical grasp balance, capable of enhancing the generalization of unknown objects. Comprehensive experiments in simulation and comparisons on dexterous grippers have demonstrated that our method can achieve balanced bimanual grasping effectively.
Abstract:The widespread deployment of Deep Neural Networks (DNNs) for 3D point cloud processing starkly contrasts with their susceptibility to security breaches, notably backdoor attacks. These attacks hijack DNNs during training, embedding triggers in the data that, once activated, cause the network to make predetermined errors while maintaining normal performance on unaltered data. This vulnerability poses significant risks, especially given the insufficient research on robust defense mechanisms for 3D point cloud networks against such sophisticated threats. Existing attacks either struggle to resist basic point cloud pre-processing methods, or rely on delicate manual design. Exploring simple, effective, imperceptible, and difficult-to-defend triggers in 3D point clouds is still challenging.To address these challenges, we introduce MirrorAttack, a novel effective 3D backdoor attack method, which implants the trigger by simply reconstructing a clean point cloud with an auto-encoder. The data-driven nature of the MirrorAttack obviates the need for complex manual design. Minimizing the reconstruction loss automatically improves imperceptibility. Simultaneously, the reconstruction network endows the trigger with pronounced nonlinearity and sample specificity, rendering traditional preprocessing techniques ineffective in eliminating it. A trigger smoothing module based on spherical harmonic transformation is also attached to regulate the intensity of the attack.Both quantitive and qualitative results verify the effectiveness of our method. We achieve state-of-the-art ASR on different types of victim models with the intervention of defensive techniques. Moreover, the minimal perturbation introduced by our trigger, as assessed by various metrics, attests to the method's stealth, ensuring its imperceptibility.
Abstract:As a cutting-edge biosensor, the event camera holds significant potential in the field of computer vision, particularly regarding privacy preservation. However, compared to traditional cameras, event streams often contain noise and possess extremely sparse semantics, posing a formidable challenge for event-based person re-identification (event Re-ID). To address this, we introduce a novel event person re-identification network: the Spectrum-guided Feature Enhancement Network (SFE-Net). This network consists of two innovative components: the Multi-grain Spectrum Attention Mechanism (MSAM) and the Consecutive Patch Dropout Module (CPDM). MSAM employs a fourier spectrum transform strategy to filter event noise, while also utilizing an event-guided multi-granularity attention strategy to enhance and capture discriminative person semantics. CPDM employs a consecutive patch dropout strategy to generate multiple incomplete feature maps, encouraging the deep Re-ID model to equally perceive each effective region of the person's body and capture robust person descriptors. Extensive experiments on Event Re-ID datasets demonstrate that our SFE-Net achieves the best performance in this task.
Abstract:Single Object Tracking in LiDAR point cloud is one of the most essential parts of environmental perception, in which small objects are inevitable in real-world scenarios and will bring a significant barrier to the accurate location. However, the existing methods concentrate more on exploring universal architectures for common categories and overlook the challenges that small objects have long been thorny due to the relative deficiency of foreground points and a low tolerance for disturbances. To this end, we propose a Siamese network-based method for small object tracking in the LiDAR point cloud, which is composed of the target-awareness prototype mining (TAPM) module and the regional grid subdivision (RGS) module. The TAPM module adopts the reconstruction mechanism of the masked decoder to learn the prototype in the feature space, aiming to highlight the presence of foreground points that will facilitate the subsequent location of small objects. Through the above prototype is capable of accentuating the small object of interest, the positioning deviation in feature maps still leads to high tracking errors. To alleviate this issue, the RGS module is proposed to recover the fine-grained features of the search region based on ViT and pixel shuffle layers. In addition, apart from the normal settings, we elaborately design a scaling experiment to evaluate the robustness of the different trackers on small objects. Extensive experiments on KITTI and nuScenes demonstrate that our method can effectively improve the tracking performance of small targets without affecting normal-sized objects.
Abstract:How human interact with objects depends on the functional roles of the target objects, which introduces the problem of affordance-aware hand-object interaction. It requires a large number of human demonstrations for the learning and understanding of plausible and appropriate hand-object interactions. In this work, we present AffordPose, a large-scale dataset of hand-object interactions with affordance-driven hand pose. We first annotate the specific part-level affordance labels for each object, e.g. twist, pull, handle-grasp, etc, instead of the general intents such as use or handover, to indicate the purpose and guide the localization of the hand-object interactions. The fine-grained hand-object interactions reveal the influence of hand-centered affordances on the detailed arrangement of the hand poses, yet also exhibit a certain degree of diversity. We collect a total of 26.7K hand-object interactions, each including the 3D object shape, the part-level affordance label, and the manually adjusted hand poses. The comprehensive data analysis shows the common characteristics and diversity of hand-object interactions per affordance via the parameter statistics and contacting computation. We also conduct experiments on the tasks of hand-object affordance understanding and affordance-oriented hand-object interaction generation, to validate the effectiveness of our dataset in learning the fine-grained hand-object interactions. Project page: https://github.com/GentlesJan/AffordPose.
Abstract:This paper focuses on the recently popular task of point cloud completion guided by multimodal information. Although existing methods have achieved excellent performance by fusing auxiliary images, there are still some deficiencies, including the poor generalization ability of the model and insufficient fine-grained semantic information for extracted features. In this work, we propose a novel multimodal fusion network for point cloud completion, which can simultaneously fuse visual and textual information to predict the semantic and geometric characteristics of incomplete shapes effectively. Specifically, to overcome the lack of prior information caused by the small-scale dataset, we employ a pre-trained vision-language model that is trained with a large amount of image-text pairs. Therefore, the textual and visual encoders of this large-scale model have stronger generalization ability. Then, we propose a multi-stage feature fusion strategy to fuse the textual and visual features into the backbone network progressively. Meanwhile, to further explore the effectiveness of fine-grained text descriptions for point cloud completion, we also build a text corpus with fine-grained descriptions, which can provide richer geometric details for 3D shapes. The rich text descriptions can be used for training and evaluating our network. Extensive quantitative and qualitative experiments demonstrate the superior performance of our method compared to state-of-the-art point cloud completion networks.
Abstract:We propose a novel Text-to-Image Generation Network, Adaptive Layout Refinement Generative Adversarial Network (ALR-GAN), to adaptively refine the layout of synthesized images without any auxiliary information. The ALR-GAN includes an Adaptive Layout Refinement (ALR) module and a Layout Visual Refinement (LVR) loss. The ALR module aligns the layout structure (which refers to locations of objects and background) of a synthesized image with that of its corresponding real image. In ALR module, we proposed an Adaptive Layout Refinement (ALR) loss to balance the matching of hard and easy features, for more efficient layout structure matching. Based on the refined layout structure, the LVR loss further refines the visual representation within the layout area. Experimental results on two widely-used datasets show that ALR-GAN performs competitively at the Text-to-Image generation task.
Abstract:Although recent Siamese network-based trackers have achieved impressive perceptual accuracy for single object tracking in LiDAR point clouds, they advance with some heavy correlation operations on relation modeling and overlook the inherent merit of arbitrariness compared to multiple object tracking. In this work, we propose a radically novel one-stream network with the strength of the Transformer encoding, which avoids the correlation operations occurring in previous Siamese network, thus considerably reducing the computational effort. In particular, the proposed method mainly consists of a Template-aware Transformer Module (TTM) and a Multi-scale Feature Aggregation (MFA) module capable of fusing spatial and semantic information. The TTM stitches the specified template and the search region together and leverages an attention mechanism to establish the information flow, breaking the previous pattern of independent \textit{extraction-and-correlation}. As a result, this module makes it possible to directly generate template-aware features that are suitable for the arbitrary and continuously changing nature of the target, enabling the model to deal with unseen categories. In addition, the MFA is proposed to make spatial and semantic information complementary to each other, which is characterized by reverse directional feature propagation that aggregates information from shallow to deep layers. Extensive experiments on KITTI and nuScenes demonstrate that our method has achieved considerable performance not only for class-specific tracking but also for class-agnostic tracking with less computation and higher efficiency.