Abstract:Recent studies in prompting large language model (LLM) for document-level machine translation (DMT) primarily focus on the inter-sentence context by flatting the source document into a long sequence. This approach relies solely on the sequence of sentences within the document. However, the complexity of document-level sequences is greater than that of shorter sentence-level sequences, which may limit LLM's ability in DMT when only this single-source knowledge is used. In this paper, we propose an enhanced approach by incorporating multiple sources of knowledge, including both the document summarization and entity translation, to enhance the performance of LLM-based DMT. Given a source document, we first obtain its summarization and translation of entities via LLM as the additional knowledge. We then utilize LLMs to generate two translations of the source document by fusing these two single knowledge sources, respectively. Finally, recognizing that different sources of knowledge may aid or hinder the translation of different sentences, we refine and rank the translations by leveraging a multi-knowledge fusion strategy to ensure the best results. Experimental results in eight document-level translation tasks show that our approach achieves an average improvement of 0.8, 0.6, and 0.4 COMET scores over the baseline without extra knowledge for LLaMA3-8B-Instruct, Mistral-Nemo-Instruct, and GPT-4o-mini, respectively.
Abstract:Recommendation systems have found extensive applications across diverse domains. However, the training data available typically comprises implicit feedback, manifested as user clicks and purchase behaviors, rather than explicit declarations of user preferences. This type of training data presents three main challenges for accurate ranking prediction: First, the unobservable nature of user preferences makes likelihood function modeling inherently difficult. Second, the resulting false positives (FP) and false negatives (FN) introduce noise into the learning process, disrupting parameter learning. Third, data bias arises as observed interactions tend to concentrate on a few popular items, exacerbating the feedback loop of popularity bias. To address these issues, we propose Variational BPR, a novel and easily implementable learning objective that integrates key components for enhancing collaborative filtering: likelihood optimization, noise reduction, and popularity debiasing. Our approach involves decomposing the pairwise loss under the ELBO-KL framework and deriving its variational lower bound to establish a manageable learning objective for approximate inference. Within this bound, we introduce an attention-based latent interest prototype contrastive mechanism, replacing instance-level contrastive learning, to effectively reduce noise from problematic samples. The process of deriving interest prototypes implicitly incorporates a flexible hard sample mining strategy, capable of simultaneously identifying hard positive and hard negative samples. Furthermore, we demonstrate that this hard sample mining strategy promotes feature distribution uniformity, thereby alleviating popularity bias. Empirically, we demonstrate the effectiveness of Variational BPR on popular backbone recommendation models. The code and data are available at: https://github.com/liubin06/VariationalBPR
Abstract:In real-world recommender systems, different tasks are typically addressed using supervised learning on task-specific datasets with carefully designed model architectures. We demonstrate that large language models (LLMs) can function as universal recommendation learners, capable of handling multiple tasks within a unified input-output framework, eliminating the need for specialized model designs. To improve the recommendation performance of LLMs, we introduce a multimodal fusion module for item representation and a sequence-in-set-out approach for efficient candidate generation. When applied to industrial-scale data, our LLM achieves competitive results with expert models elaborately designed for different recommendation tasks. Furthermore, our analysis reveals that recommendation outcomes are highly sensitive to text input, highlighting the potential of prompt engineering in optimizing industrial-scale recommender systems.
Abstract:Quantizing deep neural networks ,reducing the precision (bit-width) of their computations, can remarkably decrease memory usage and accelerate processing, making these models more suitable for large-scale medical imaging applications with limited computational resources. However, many existing methods studied "fake quantization", which simulates lower precision operations during inference, but does not actually reduce model size or improve real-world inference speed. Moreover, the potential of deploying real 3D low-bit quantization on modern GPUs is still unexplored. In this study, we introduce a real post-training quantization (PTQ) framework that successfully implements true 8-bit quantization on state-of-the-art (SOTA) 3D medical segmentation models, i.e., U-Net, SegResNet, SwinUNETR, nnU-Net, UNesT, TransUNet, ST-UNet,and VISTA3D. Our approach involves two main steps. First, we use TensorRT to perform fake quantization for both weights and activations with unlabeled calibration dataset. Second, we convert this fake quantization into real quantization via TensorRT engine on real GPUs, resulting in real-world reductions in model size and inference latency. Extensive experiments demonstrate that our framework effectively performs 8-bit quantization on GPUs without sacrificing model performance. This advancement enables the deployment of efficient deep learning models in medical imaging applications where computational resources are constrained. The code and models have been released, including U-Net, TransUNet pretrained on the BTCV dataset for abdominal (13-label) segmentation, UNesT pretrained on the Whole Brain Dataset for whole brain (133-label) segmentation, and nnU-Net, SegResNet, SwinUNETR and VISTA3D pretrained on TotalSegmentator V2 for full body (104-label) segmentation. https://github.com/hrlblab/PTQ.
Abstract:Survival analysis (SA) models have been widely studied in mining electronic health records (EHRs), particularly in forecasting the risk of critical conditions for prioritizing high-risk patients. However, their vulnerability to adversarial attacks is much less explored in the literature. Developing black-box perturbation algorithms and evaluating their impact on state-of-the-art survival models brings two benefits to medical applications. First, it can effectively evaluate the robustness of models in pre-deployment testing. Also, exploring how subtle perturbations would result in significantly different outcomes can provide counterfactual insights into the clinical interpretation of model prediction. In this work, we introduce SurvAttack, a novel black-box adversarial attack framework leveraging subtle clinically compatible, and semantically consistent perturbations on longitudinal EHRs to degrade survival models' predictive performance. We specifically develop a greedy algorithm to manipulate medical codes with various adversarial actions throughout a patient's medical history. Then, these adversarial actions are prioritized using a composite scoring strategy based on multi-aspect perturbation quality, including saliency, perturbation stealthiness, and clinical meaningfulness. The proposed adversarial EHR perturbation algorithm is then used in an efficient SA-specific strategy to attack a survival model when estimating the temporal ranking of survival urgency for patients. To demonstrate the significance of our work, we conduct extensive experiments, including baseline comparisons, explainability analysis, and case studies. The experimental results affirm our research's effectiveness in illustrating the vulnerabilities of patient survival models, model interpretation, and ultimately contributing to healthcare quality.
Abstract:The accuracy of deep neural networks is significantly influenced by the effectiveness of mini-batch construction during training. In single-label scenarios, such as binary and multi-class classification tasks, it has been demonstrated that batch selection algorithms preferring samples with higher uncertainty achieve better performance than difficulty-based methods. Although there are two batch selection methods tailored for multi-label data, none of them leverage important uncertainty information. Adapting the concept of uncertainty to multi-label data is not a trivial task, since there are two issues that should be tackled. First, traditional variance or entropy-based uncertainty measures ignore fluctuations of predictions within sliding windows and the importance of the current model state. Second, existing multi-label methods do not explicitly exploit the label correlations, particularly the uncertainty-based label correlations that evolve during the training process. In this paper, we propose an uncertainty-based multi-label batch selection algorithm. It assesses uncertainty for each label by considering differences between successive predictions and the confidence of current outputs, and further leverages dynamic uncertainty-based label correlations to emphasize instances whose uncertainty is synergistically expressed across multiple labels. Empirical studies demonstrate the effectiveness of our method in improving the performance and accelerating the convergence of various multi-label deep learning models.
Abstract:This paper proposes \emph{Episodic and Lifelong Exploration via Maximum ENTropy} (ELEMENT), a novel, multiscale, intrinsically motivated reinforcement learning (RL) framework that is able to explore environments without using any extrinsic reward and transfer effectively the learned skills to downstream tasks. We advance the state of the art in three ways. First, we propose a multiscale entropy optimization to take care of the fact that previous maximum state entropy, for lifelong exploration with millions of state observations, suffers from vanishing rewards and becomes very expensive computationally across iterations. Therefore, we add an episodic maximum entropy over each episode to speedup the search further. Second, we propose a novel intrinsic reward for episodic entropy maximization named \emph{average episodic state entropy} which provides the optimal solution for a theoretical upper bound of the episodic state entropy objective. Third, to speed the lifelong entropy maximization, we propose a $k$ nearest neighbors ($k$NN) graph to organize the estimation of the entropy and updating processes that reduces the computation substantially. Our ELEMENT significantly outperforms state-of-the-art intrinsic rewards in both episodic and lifelong setups. Moreover, it can be exploited in task-agnostic pre-training, collecting data for offline reinforcement learning, etc.
Abstract:In this study, we delve into the robustness of neural network-based LiDAR point cloud tracking models under adversarial attacks, a critical aspect often overlooked in favor of performance enhancement. These models, despite incorporating advanced architectures like Transformer or Bird's Eye View (BEV), tend to neglect robustness in the face of challenges such as adversarial attacks, domain shifts, or data corruption. We instead focus on the robustness of the tracking models under the threat of adversarial attacks. We begin by establishing a unified framework for conducting adversarial attacks within the context of 3D object tracking, which allows us to thoroughly investigate both white-box and black-box attack strategies. For white-box attacks, we tailor specific loss functions to accommodate various tracking paradigms and extend existing methods such as FGSM, C\&W, and PGD to the point cloud domain. In addressing black-box attack scenarios, we introduce a novel transfer-based approach, the Target-aware Perturbation Generation (TAPG) algorithm, with the dual objectives of achieving high attack performance and maintaining low perceptibility. This method employs a heuristic strategy to enforce sparse attack constraints and utilizes random sub-vector factorization to bolster transferability. Our experimental findings reveal a significant vulnerability in advanced tracking methods when subjected to both black-box and white-box attacks, underscoring the necessity for incorporating robustness against adversarial attacks into the design of LiDAR point cloud tracking models. Notably, compared to existing methods, the TAPG also strikes an optimal balance between the effectiveness of the attack and the concealment of the perturbations.
Abstract:Existing large pre-trained models typically map text input to text output in an end-to-end manner, such as ChatGPT, or map a segment of text input to a hierarchy of action decisions, such as OpenVLA. However, humans can simultaneously generate text and actions when receiving specific input signals. For example, a driver can make precise driving decisions while conversing with a friend in the passenger seat. Motivated by this observation, we consider the following question in this work: is it possible to construct a pre-trained model that can provide both language interaction and precise decision-making capabilities in dynamic open scenarios. We provide a definitive answer to this question by developing a new model architecture termed Visual Language Action model for Chatting and Decision Making (VLA4CD), and further demonstrating its performance in challenging autonomous driving tasks. Specifically, we leverage LoRA to fine-tune a pre-trained LLM with data of multiple modalities covering language, visual, and action. Unlike the existing LoRA operations used for LLM fine-tuning, we have designed new computational modules and training cost functions for VLA4CD. These designs enable VLA4CD to provide continuous-valued action decisions while outputting text responses. In contrast, existing LLMs can only output text responses, and current VLA models can only output action decisions. Moreover, these VLA models handle action data by discretizing and then tokenizing the discretized actions, a method unsuitable for complex decision-making tasks involving high-dimensional continuous-valued action vectors, such as autonomous driving. The experimental results on CARLA validate that: (1) our proposed model construction method is effective; (2) compared to the SOTA VLA model, VLA4CD can provide more accurate real-time decision-making while retaining the text interaction capability inherent to LLMs.
Abstract:As a manner to augment pre-trained large language models (LLM), knowledge injection is critical to develop vertical domain large models and has been widely studied. Although most current approaches, including parameter-efficient fine-tuning (PEFT) and block expansion methods, uniformly apply knowledge across all LLM layers, it raises the question: are all layers equally crucial for knowledge injection? We begin by evaluating the importance of each layer in finding the optimal layer range for knowledge injection. Intuitively, the more important layers should play a more critical role in knowledge injection and deserve a denser injection. We observe performance dips in question-answering benchmarks after the removal or expansion of the shallow layers, and the degradation shrinks as the layer gets deeper, indicating that the shallow layers hold the key to knowledge injection. This insight leads us to propose the S strategy, a post-pretraining strategy of selectively enhancing shallow layers while pruning the less effective deep ones. Based on this strategy, we introduce Llama Slayer-8B and Llama Slayer-8B-Instruct. We experimented on the corpus of code $\&$ math and demonstrated the effectiveness of our strategy. Further experiments across different LLM, Mistral-7B, and a legal corpus confirmed the general applicability of the approach, underscoring its wide-ranging efficacy. Our code is available at: \https://github.com/txchen-USTC/Llama-Slayer