Abstract:Federated learning (FL), an emerging distributed machine learning paradigm, has been applied to various privacy-preserving scenarios. However, due to its distributed nature, FL faces two key issues: the non-independent and identical distribution (non-IID) of user data and vulnerability to Byzantine threats. To address these challenges, in this paper, we propose FedCAP, a robust FL framework against both data heterogeneity and Byzantine attacks. The core of FedCAP is a model update calibration mechanism to help a server capture the differences in the direction and magnitude of model updates among clients. Furthermore, we design a customized model aggregation rule that facilitates collaborative training among similar clients while accelerating the model deterioration of malicious clients. With a Euclidean norm-based anomaly detection mechanism, the server can quickly identify and permanently remove malicious clients. Moreover, the impact of data heterogeneity and Byzantine attacks can be further mitigated through personalization on the client side. We conduct extensive experiments, comparing multiple state-of-the-art baselines, to demonstrate that FedCAP performs well in several non-IID settings and shows strong robustness under a series of poisoning attacks.
Abstract:In research findings, co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas. The ability to predict 1p19q status is critical for treatment planning and patient follow-up. This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection. Although public networks such as RestNet and AlexNet can effectively diagnose brain cancers using transfer learning, the model includes quite a few weights that have nothing to do with medical images. As a result, the diagnostic results are unreliable by the transfer learning model. To deal with the problem of trustworthiness, we create the model from the ground up, rather than depending on a pre-trained model. To enable flexibility, we combined convolution stacking with a dropout and full connect operation, it improved performance by reducing overfitting. During model training, we also supplement the given dataset and inject Gaussian noise. We use three--fold cross-validation to train the best selection model. Comparing InceptionV3, VGG16, and MobileNetV2 fine-tuned with pre-trained models, our model produces better results. On an validation set of 125 codeletion vs. 31 not codeletion images, the proposed network achieves 96.37\% percent F1-score, 97.46\% percent precision, and 96.34\% percent recall when classifying 1p/19q codeletion and not codeletion images.
Abstract:In this letter, we analyze the performance of mixed coherent and non-coherent transmissions approach, which can improve the performance of cell-free multiple-input multiple-output orthogonal frequency division multiplexing (CF mMIMO-OFDM) systems under asynchronous reception. To this end, we first obtain the achievable downlink sum-rate for the mixed coherent and non-coherent transmissions, and then provide a closed-form expression for the case with the maximum ratio precoding. Subsequently, an efficient clustering algorithm is proposed to group access points into different clusters with the same quantized phase shift in each cluster. Numerical results demonstrate that the mixed coherent and non-coherent transmissions can effectively improve the sum-rate of CF mMIMO-OFDM systems under asynchronous reception.
Abstract:Large Language Models (LLMs) have demonstrated remarkable success across various domains but often lack fairness considerations, potentially leading to discriminatory outcomes against marginalized populations. Unlike fairness in traditional machine learning, fairness in LLMs involves unique backgrounds, taxonomies, and fulfillment techniques. This tutorial provides a systematic overview of recent advances in the literature concerning fair LLMs, beginning with real-world case studies to introduce LLMs, followed by an analysis of bias causes therein. The concept of fairness in LLMs is then explored, summarizing the strategies for evaluating bias and the algorithms designed to promote fairness. Additionally, resources for assessing bias in LLMs, including toolkits and datasets, are compiled, and current research challenges and open questions in the field are discussed. The repository is available at \url{https://github.com/LavinWong/Fairness-in-Large-Language-Models}.
Abstract:Artificial intelligence (AI) is rapidly advancing in healthcare, enhancing the efficiency and effectiveness of services across various specialties, including cardiology, ophthalmology, dermatology, emergency medicine, etc. AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions by leveraging technologies such as machine learning, neural networks, and natural language processing. However, these advancements also introduce substantial ethical and fairness challenges, particularly related to biases in data and algorithms. These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups. This survey paper examines the integration of AI in healthcare, highlighting critical challenges related to bias and exploring strategies for mitigation. We emphasize the necessity of diverse datasets, fairness-aware algorithms, and regulatory frameworks to ensure equitable healthcare delivery. The paper concludes with recommendations for future research, advocating for interdisciplinary approaches, transparency in AI decision-making, and the development of innovative and inclusive AI applications.
Abstract:Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts (\textit{e.g.,} medium-sized LMs versus large-sized LMs) and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their foundational principles and operational distinctions. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The implementation and additional resources are publicly available at https://github.com/LavinWong/Fairness-in-Large-Language-Models/tree/main/definitions.
Abstract:The integration of Artificial Intelligence (AI) into education has transformative potential, providing tailored learning experiences and creative instructional approaches. However, the inherent biases in AI algorithms hinder this improvement by unintentionally perpetuating prejudice against specific demographics, especially in human-centered applications like education. This survey delves deeply into the developing topic of algorithmic fairness in educational contexts, providing a comprehensive evaluation of the diverse literature on fairness, bias, and ethics in AI-driven educational applications. It identifies the common forms of biases, such as data-related, algorithmic, and user-interaction, that fundamentally undermine the accomplishment of fairness in AI teaching aids. By outlining existing techniques for mitigating these biases, ranging from varied data gathering to algorithmic fairness interventions, the survey emphasizes the critical role of ethical considerations and legal frameworks in shaping a more equitable educational environment. Furthermore, it guides readers through the complexities of fairness measurements, methods, and datasets, shedding light on the way to bias reduction. Despite these gains, this survey highlights long-standing issues, such as achieving a balance between fairness and accuracy, as well as the need for diverse datasets. Overcoming these challenges and ensuring the ethical and fair use of AI's promise in education call for a collaborative, interdisciplinary approach.
Abstract:3D object detection plays an important role in autonomous driving; however, its vulnerability to backdoor attacks has become evident. By injecting ''triggers'' to poison the training dataset, backdoor attacks manipulate the detector's prediction for inputs containing these triggers. Existing backdoor attacks against 3D object detection primarily poison 3D LiDAR signals, where large-sized 3D triggers are injected to ensure their visibility within the sparse 3D space, rendering them easy to detect and impractical in real-world scenarios. In this paper, we delve into the robustness of 3D object detection, exploring a new backdoor attack surface through 2D cameras. Given the prevalent adoption of camera and LiDAR signal fusion for high-fidelity 3D perception, we investigate the latent potential of camera signals to disrupt the process. Although the dense nature of camera signals enables the use of nearly imperceptible small-sized triggers to mislead 2D object detection, realizing 2D-oriented backdoor attacks against 3D object detection is non-trivial. The primary challenge emerges from the fusion process that transforms camera signals into a 3D space, compromising the association with the 2D trigger to the target output. To tackle this issue, we propose an innovative 2D-oriented backdoor attack against LiDAR-camera fusion methods for 3D object detection, named BadFusion, for preserving trigger effectiveness throughout the entire fusion process. The evaluation demonstrates the effectiveness of BadFusion, achieving a significantly higher attack success rate compared to existing 2D-oriented attacks.
Abstract:Recent studies have revealed severe privacy risks in federated learning, represented by Gradient Leakage Attacks. However, existing studies mainly aim at increasing the privacy attack success rate and overlook the high computation costs for recovering private data, making the privacy attack impractical in real applications. In this study, we examine privacy attacks from the perspective of efficiency and propose a framework for improving the Efficiency of Privacy Attacks in Federated Learning (EPAFL). We make three novel contributions. First, we systematically evaluate the computational costs for representative privacy attacks in federated learning, which exhibits a high potential to optimize efficiency. Second, we propose three early-stopping techniques to effectively reduce the computational costs of these privacy attacks. Third, we perform experiments on benchmark datasets and show that our proposed method can significantly reduce computational costs and maintain comparable attack success rates for state-of-the-art privacy attacks in federated learning. We provide the codes on GitHub at https://github.com/mlsysx/EPAFL.
Abstract:In the rapidly evolving landscape of generative artificial intelligence (AI), the increasingly pertinent issue of copyright infringement arises as AI advances to generate content from scraped copyrighted data, prompting questions about ownership and protection that impact professionals across various careers. With this in mind, this survey provides an extensive examination of copyright infringement as it pertains to generative AI, aiming to stay abreast of the latest developments and open problems. Specifically, it will first outline methods of detecting copyright infringement in mediums such as text, image, and video. Next, it will delve an exploration of existing techniques aimed at safeguarding copyrighted works from generative models. Furthermore, this survey will discuss resources and tools for users to evaluate copyright violations. Finally, insights into ongoing regulations and proposals for AI will be explored and compared. Through combining these disciplines, the implications of AI-driven content and copyright are thoroughly illustrated and brought into question.