Abstract:Node classification using Graph Neural Networks (GNNs) has been widely applied in various practical scenarios, such as predicting user interests and detecting communities in social networks. However, recent studies have shown that graph-structured networks often contain potential noise and attacks, in the form of topological perturbations and weight disturbances, which can lead to decreased classification performance in GNNs. To improve the robustness of the model, we propose a novel method: Random Walk Negative Sampling Graph Convolutional Network (RW-NSGCN). Specifically, RW-NSGCN integrates the Random Walk with Restart (RWR) and PageRank (PGR) algorithms for negative sampling and employs a Determinantal Point Process (DPP)-based GCN for convolution operations. RWR leverages both global and local information to manage noise and local variations, while PGR assesses node importance to stabilize the topological structure. The DPP-based GCN ensures diversity among negative samples and aggregates their features to produce robust node embeddings, thereby improving classification performance. Experimental results demonstrate that the RW-NSGCN model effectively addresses network topology attacks and weight instability, increasing the accuracy of anomaly detection and overall stability. In terms of classification accuracy, RW-NSGCN significantly outperforms existing methods, showing greater resilience across various scenarios and effectively mitigating the impact of such vulnerabilities.
Abstract:With the advent of accessible interfaces for interacting with large language models, there has been an associated explosion in both their commercial and academic interest. Consequently, there has also been an sudden burst of novel attacks associated with large language models, jeopardizing user data on a massive scale. Situated at a comparable crossroads in its development, and equally prolific to LLMs in its rampant growth, blockchain has emerged in recent years as a disruptive technology with the potential to redefine how we approach data handling. In particular, and due to its strong guarantees about data immutability and irrefutability as well as inherent data provenance assurances, blockchain has attracted significant attention as a means to better defend against the array of attacks affecting LLMs and further improve the quality of their responses. In this survey, we holistically evaluate current research on how blockchains are being used to help protect against LLM vulnerabilities, as well as analyze how they may further be used in novel applications. To better serve these ends, we introduce a taxonomy of blockchain for large language models (BC4LLM) and also develop various definitions to precisely capture the nature of different bodies of research in these areas. Moreover, throughout the paper, we present frameworks to contextualize broader research efforts, and in order to motivate the field further, we identify future research goals as well as challenges present in the blockchain for large language model (BC4LLM) space.
Abstract:In recent years, variational quantum circuits (VQCs) have been widely explored to advance quantum circuits against classic models on various domains, such as quantum chemistry and quantum machine learning. Similar to classic machine-learning models, VQCs can be optimized through gradient-based approaches. However, the gradient variance of VQCs may dramatically vanish as the number of qubits or layers increases. This issue, a.k.a. Barren Plateaus (BPs), seriously hinders the scaling of VQCs on large datasets. To mitigate the exponential gradient vanishing, extensive efforts have been devoted to tackling this issue through diverse strategies. In this survey, we conduct a systematic literature review of recent works from both investigation and mitigation perspectives. Besides, we propose a new taxonomy to categorize most existing mitigation strategies. At last, we provide insightful discussion for future directions of BPs.
Abstract:With the proliferation of Artificial Intelligence, there has been a massive increase in the amount of data required to be accumulated and disseminated digitally. As the data are available online in digital landscapes with complex and sophisticated infrastructures, it is crucial to implement various defense mechanisms based on cybersecurity. Generative Adversarial Networks (GANs), which are deep learning models, have emerged as powerful solutions for addressing the constantly changing security issues. This survey studies the significance of the deep learning model, precisely on GANs, in strengthening cybersecurity defenses. Our survey aims to explore the various works completed in GANs, such as Intrusion Detection Systems (IDS), Mobile and Network Trespass, BotNet Detection, and Malware Detection. The focus is to examine how GANs can be influential tools to strengthen cybersecurity defenses in these domains. Further, the paper discusses the challenges and constraints of using GANs in these areas and suggests future research directions. Overall, the paper highlights the potential of GANs in enhancing cybersecurity measures and addresses the need for further exploration in this field.
Abstract:The rapid evolution of artificial intelligence (AI) through developments in Large Language Models (LLMs) and Vision-Language Models (VLMs) has brought significant advancements across various technological domains. While these models enhance capabilities in natural language processing and visual interactive tasks, their growing adoption raises critical concerns regarding security and ethical alignment. This survey provides an extensive review of the emerging field of jailbreaking--deliberately circumventing the ethical and operational boundaries of LLMs and VLMs--and the consequent development of defense mechanisms. Our study categorizes jailbreaks into seven distinct types and elaborates on defense strategies that address these vulnerabilities. Through this comprehensive examination, we identify research gaps and propose directions for future studies to enhance the security frameworks of LLMs and VLMs. Our findings underscore the necessity for a unified perspective that integrates both jailbreak strategies and defensive solutions to foster a robust, secure, and reliable environment for the next generation of language models. More details can be found on our website: \url{https://chonghan-chen.com/llm-jailbreak-zoo-survey/}.
Abstract:Large Language Models (LLMs) have achieved unparalleled success across diverse language modeling tasks in recent years. However, this progress has also intensified ethical concerns, impacting the deployment of LLMs in everyday contexts. This paper provides a comprehensive survey of ethical challenges associated with LLMs, from longstanding issues such as copyright infringement, systematic bias, and data privacy, to emerging problems like truthfulness and social norms. We critically analyze existing research aimed at understanding, examining, and mitigating these ethical risks. Our survey underscores integrating ethical standards and societal values into the development of LLMs, thereby guiding the development of responsible and ethically aligned language models.
Abstract:Graph neural networks (GNNs) have been extensively employed in node classification. Nevertheless, recent studies indicate that GNNs are vulnerable to topological perturbations, such as adversarial attacks and edge disruptions. Considerable efforts have been devoted to mitigating these challenges. For example, pioneering Bayesian methodologies, including GraphSS and LlnDT, incorporate Bayesian label transitions and topology-based label sampling to strengthen the robustness of GNNs. However, GraphSS is hindered by slow convergence, while LlnDT faces challenges in sparse graphs. To overcome these limitations, we propose a novel label inference framework, TraTopo, which combines topology-driven label propagation, Bayesian label transitions, and link analysis via random walks. TraTopo significantly surpasses its predecessors on sparse graphs by utilizing random walk sampling, specifically targeting isolated nodes for link prediction, thus enhancing its effectiveness in topological sampling contexts. Additionally, TraTopo employs a shortest-path strategy to refine link prediction, thereby reducing predictive overhead and improving label inference accuracy. Empirical evaluations highlight TraTopo's superiority in node classification, significantly exceeding contemporary GCN models in accuracy.
Abstract:In the era of noisy intermediate-scale quantum (NISQ), variational quantum circuits (VQCs) have been widely applied in various domains, advancing the superiority of quantum circuits against classic models. Similar to classic models, regular VQCs can be optimized by various gradient-based methods. However, the optimization may be initially trapped in barren plateaus or eventually entangled in saddle points during training. These gradient issues can significantly undermine the trainability of VQC. In this work, we propose a strategy that regularizes model parameters with prior knowledge of the train data and Gaussian noise diffusion. We conduct ablation studies to verify the effectiveness of our strategy across four public datasets and demonstrate that our method can improve the trainability of VQCs against the above-mentioned gradient issues.
Abstract:The right to be forgotten (RTBF) seeks to safeguard individuals from the enduring effects of their historical actions by implementing machine-learning techniques. These techniques facilitate the deletion of previously acquired knowledge without requiring extensive model retraining. However, they often overlook a critical issue: unlearning processes bias. This bias emerges from two main sources: (1) data-level bias, characterized by uneven data removal, and (2) algorithm-level bias, which leads to the contamination of the remaining dataset, thereby degrading model accuracy. In this work, we analyze the causal factors behind the unlearning process and mitigate biases at both data and algorithmic levels. Typically, we introduce an intervention-based approach, where knowledge to forget is erased with a debiased dataset. Besides, we guide the forgetting procedure by leveraging counterfactual examples, as they maintain semantic data consistency without hurting performance on the remaining dataset. Experimental results demonstrate that our method outperforms existing machine unlearning baselines on evaluation metrics.
Abstract:As new research on Large Language Models (LLMs) continues, it is difficult to keep up with new research and models. To help researchers synthesize the new research many have written survey papers, but even those have become numerous. In this paper, we develop a method to automatically assign survey papers to a taxonomy. We collect the metadata of 144 LLM survey papers and explore three paradigms to classify papers within the taxonomy. Our work indicates that leveraging graph structure information on co-category graphs can significantly outperform the language models in two paradigms; pre-trained language models' fine-tuning and zero-shot/few-shot classifications using LLMs. We find that our model surpasses an average human recognition level and that fine-tuning LLMs using weak labels generated by a smaller model, such as the GCN in this study, can be more effective than using ground-truth labels, revealing the potential of weak-to-strong generalization in the taxonomy classification task.