Abstract:Recent advancements in large language models (LLMs) have significantly enhanced the ability of LLM-based systems to perform complex tasks through natural language processing and tool interaction. However, optimizing these LLM-based systems for specific tasks remains challenging, often requiring manual interventions like prompt engineering and hyperparameter tuning. Existing automatic optimization methods, such as textual feedback-based techniques (e.g., TextGrad), tend to focus on immediate feedback, analogous to using immediate derivatives in traditional numerical gradient descent. However, relying solely on such feedback can be limited when the adjustments made in response to this feedback are either too small or fluctuate irregularly, potentially slowing down or even stalling the optimization process. To overcome these challenges, more adaptive methods are needed, especially in situations where the system's response is evolving slowly or unpredictably. In this paper, we introduce REVOLVE, an optimization method that tracks how "R"esponses "EVOLVE" across iterations in LLM systems. By focusing on the evolution of responses over time, REVOLVE enables more stable and effective optimization by making thoughtful, progressive adjustments at each step. Experimental results demonstrate that REVOLVE outperforms competitive baselines, achieving a 7.8% improvement in prompt optimization, a 20.72% gain in solution refinement, and a 29.17% increase in code optimization. Additionally, REVOLVE converges in fewer iterations, resulting in significant computational savings. These advantages highlight its adaptability and efficiency, positioning REVOLVE as a valuable tool for optimizing LLM-based systems and accelerating the development of next-generation AI technologies. Code is available at: https://github.com/Peiyance/REVOLVE.
Abstract:Computed tomography (CT) report generation is crucial to assist radiologists in interpreting CT volumes, which can be time-consuming and labor-intensive. Existing methods primarily only consider the global features of the entire volume, making it struggle to focus on specific regions and potentially missing abnormalities. To address this issue, we propose Reg2RG, the first region-guided referring and grounding framework for CT report generation, which enhances diagnostic performance by focusing on anatomical regions within the volume. Specifically, we utilize masks from a universal segmentation module to capture local features for each referring region. A local feature decoupling (LFD) strategy is proposed to preserve the local high-resolution details with little computational overhead. Then the local features are integrated with global features to capture inter-regional relationships within a cohesive context. Moreover, we propose a novel region-report alignment (RRA) training strategy. It leverages the recognition of referring regions to guide the generation of region-specific reports, enhancing the model's referring and grounding capabilities while also improving the report's interpretability. A large language model (LLM) is further employed as the language decoder to generate reports from integrated visual features, facilitating region-level comprehension. Extensive experiments on two large-scale chest CT-report datasets demonstrate the superiority of our method, which outperforms several state-of-the-art methods in terms of both natural language generation and clinical efficacy metrics while preserving promising interpretability. The code will be made publicly available.
Abstract:The rapid evolution of artificial intelligence (AI) through developments in Large Language Models (LLMs) and Vision-Language Models (VLMs) has brought significant advancements across various technological domains. While these models enhance capabilities in natural language processing and visual interactive tasks, their growing adoption raises critical concerns regarding security and ethical alignment. This survey provides an extensive review of the emerging field of jailbreaking--deliberately circumventing the ethical and operational boundaries of LLMs and VLMs--and the consequent development of defense mechanisms. Our study categorizes jailbreaks into seven distinct types and elaborates on defense strategies that address these vulnerabilities. Through this comprehensive examination, we identify research gaps and propose directions for future studies to enhance the security frameworks of LLMs and VLMs. Our findings underscore the necessity for a unified perspective that integrates both jailbreak strategies and defensive solutions to foster a robust, secure, and reliable environment for the next generation of language models. More details can be found on our website: \url{https://chonghan-chen.com/llm-jailbreak-zoo-survey/}.
Abstract:Large Language Models (LLMs) are typically harmless but remain vulnerable to carefully crafted prompts known as ``jailbreaks'', which can bypass protective measures and induce harmful behavior. Recent advancements in LLMs have incorporated moderation guardrails that can filter outputs, which trigger processing errors for certain malicious questions. Existing red-teaming benchmarks often neglect to include questions that trigger moderation guardrails, making it difficult to evaluate jailbreak effectiveness. To address this issue, we introduce JAMBench, a harmful behavior benchmark designed to trigger and evaluate moderation guardrails. JAMBench involves 160 manually crafted instructions covering four major risk categories at multiple severity levels. Furthermore, we propose a jailbreak method, JAM (Jailbreak Against Moderation), designed to attack moderation guardrails using jailbreak prefixes to bypass input-level filters and a fine-tuned shadow model functionally equivalent to the guardrail model to generate cipher characters to bypass output-level filters. Our extensive experiments on four LLMs demonstrate that JAM achieves higher jailbreak success ($\sim$ $\times$ 19.88) and lower filtered-out rates ($\sim$ $\times$ 1/6) than baselines.
Abstract:Multimodal pre-training demonstrates its potential in the medical domain, which learns medical visual representations from paired medical reports. However, many pre-training tasks require extra annotations from clinicians, and most of them fail to explicitly guide the model to learn the desired features of different pathologies. To the best of our knowledge, we are the first to utilize Visual Question Answering (VQA) for multimodal pre-training to guide the framework focusing on targeted pathological features. In this work, we leverage descriptions in medical reports to design multi-granular question-answer pairs associated with different diseases, which assist the framework in pre-training without requiring extra annotations from experts. We also propose a novel pre-training framework with a quasi-textual feature transformer, a module designed to transform visual features into a quasi-textual space closer to the textual domain via a contrastive learning strategy. This narrows the vision-language gap and facilitates modality alignment. Our framework is applied to four downstream tasks: report generation, classification, segmentation, and detection across five datasets. Extensive experiments demonstrate the superiority of our framework compared to other state-of-the-art methods. Our code will be released upon acceptance.
Abstract:Self-training is a simple yet effective method for semi-supervised learning, during which pseudo-label selection plays an important role for handling confirmation bias. Despite its popularity, applying self-training to landmark detection faces three problems: 1) The selected confident pseudo-labels often contain data bias, which may hurt model performance; 2) It is not easy to decide a proper threshold for sample selection as the localization task can be sensitive to noisy pseudo-labels; 3) coordinate regression does not output confidence, making selection-based self-training infeasible. To address the above issues, we propose Self-Training for Landmark Detection (STLD), a method that does not require explicit pseudo-label selection. Instead, STLD constructs a task curriculum to deal with confirmation bias, which progressively transitions from more confident to less confident tasks over the rounds of self-training. Pseudo pretraining and shrink regression are two essential components for such a curriculum, where the former is the first task of the curriculum for providing a better model initialization and the latter is further added in the later rounds to directly leverage the pseudo-labels in a coarse-to-fine manner. Experiments on three facial and one medical landmark detection benchmark show that STLD outperforms the existing methods consistently in both semi- and omni-supervised settings.
Abstract:The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
Abstract:Recently, anatomical landmark detection has achieved great progresses on single-domain data, which usually assumes training and test sets are from the same domain. However, such an assumption is not always true in practice, which can cause significant performance drop due to domain shift. To tackle this problem, we propose a novel framework for anatomical landmark detection under the setting of unsupervised domain adaptation (UDA), which aims to transfer the knowledge from labeled source domain to unlabeled target domain. The framework leverages self-training and domain adversarial learning to address the domain gap during adaptation. Specifically, a self-training strategy is proposed to select reliable landmark-level pseudo-labels of target domain data with dynamic thresholds, which makes the adaptation more effective. Furthermore, a domain adversarial learning module is designed to handle the unaligned data distributions of two domains by learning domain-invariant features via adversarial training. Our experiments on cephalometric and lung landmark detection show the effectiveness of the method, which reduces the domain gap by a large margin and outperforms other UDA methods consistently. The code is available at https://github.com/jhb86253817/UDA_Med_Landmark.
Abstract:Automatic medical report generation (MRG) is of great research value as it has the potential to relieve radiologists from the heavy burden of report writing. Despite recent advancements, accurate MRG remains challenging due to the need for precise clinical understanding and the identification of clinical findings. Moreover, the imbalanced distribution of diseases makes the challenge even more pronounced, as rare diseases are underrepresented in training data, making their diagnostic performance unreliable. To address these challenges, we propose diagnosis-driven prompts for medical report generation (PromptMRG), a novel framework that aims to improve the diagnostic accuracy of MRG with the guidance of diagnosis-aware prompts. Specifically, PromptMRG is based on encoder-decoder architecture with an extra disease classification branch. When generating reports, the diagnostic results from the classification branch are converted into token prompts to explicitly guide the generation process. To further improve the diagnostic accuracy, we design cross-modal feature enhancement, which retrieves similar reports from the database to assist the diagnosis of a query image by leveraging the knowledge from a pre-trained CLIP. Moreover, the disease imbalanced issue is addressed by applying an adaptive logit-adjusted loss to the classification branch based on the individual learning status of each disease, which overcomes the barrier of text decoder's inability to manipulate disease distributions. Experiments on two MRG benchmarks show the effectiveness of the proposed method, where it obtains state-of-the-art clinical efficacy performance on both datasets.
Abstract:Diabetic Retinopathy (DR) is a common complication of diabetes and a leading cause of blindness worldwide. Early and accurate grading of its severity is crucial for disease management. Although deep learning has shown great potential for automated DR grading, its real-world deployment is still challenging due to distribution shifts among source and target domains, known as the domain generalization problem. Existing works have mainly attributed the performance degradation to limited domain shifts caused by simple visual discrepancies, which cannot handle complex real-world scenarios. Instead, we present preliminary evidence suggesting the existence of three-fold generalization issues: visual and degradation style shifts, diagnostic pattern diversity, and data imbalance. To tackle these issues, we propose a novel unified framework named Generalizable Diabetic Retinopathy Grading Network (GDRNet). GDRNet consists of three vital components: fundus visual-artifact augmentation (FundusAug), dynamic hybrid-supervised loss (DahLoss), and domain-class-aware re-balancing (DCR). FundusAug generates realistic augmented images via visual transformation and image degradation, while DahLoss jointly leverages pixel-level consistency and image-level semantics to capture the diverse diagnostic patterns and build generalizable feature representations. Moreover, DCR mitigates the data imbalance from a domain-class view and avoids undesired over-emphasis on rare domain-class pairs. Finally, we design a publicly available benchmark for fair evaluations. Extensive comparison experiments against advanced methods and exhaustive ablation studies demonstrate the effectiveness and generalization ability of GDRNet.