Abstract:In the realm of personalized recommender systems, the challenge of adapting to evolving user preferences and the continuous influx of new users and items is paramount. Conventional models, typically reliant on a static training-test approach, struggle to keep pace with these dynamic demands. Streaming recommendation, particularly through continual graph learning, has emerged as a novel solution. However, existing methods in this area either rely on historical data replay, which is increasingly impractical due to stringent data privacy regulations; or are inability to effectively address the over-stability issue; or depend on model-isolation and expansion strategies. To tackle these difficulties, we present GPT4Rec, a Graph Prompt Tuning method for streaming Recommendation. Given the evolving user-item interaction graph, GPT4Rec first disentangles the graph patterns into multiple views. After isolating specific interaction patterns and relationships in different views, GPT4Rec utilizes lightweight graph prompts to efficiently guide the model across varying interaction patterns within the user-item graph. Firstly, node-level prompts are employed to instruct the model to adapt to changes in the attributes or properties of individual nodes within the graph. Secondly, structure-level prompts guide the model in adapting to broader patterns of connectivity and relationships within the graph. Finally, view-level prompts are innovatively designed to facilitate the aggregation of information from multiple disentangled views. These prompt designs allow GPT4Rec to synthesize a comprehensive understanding of the graph, ensuring that all vital aspects of the user-item interactions are considered and effectively integrated. Experiments on four diverse real-world datasets demonstrate the effectiveness and efficiency of our proposal.
Abstract:We investigate node representation learning on text-attributed graphs (TAGs), where nodes are associated with text information. Although recent studies on graph neural networks (GNNs) and pretrained language models (PLMs) have exhibited their power in encoding network and text signals, respectively, less attention has been paid to delicately coupling these two types of models on TAGs. Specifically, existing GNNs rarely model text in each node in a contextualized way; existing PLMs can hardly be applied to characterize graph structures due to their sequence architecture. To address these challenges, we propose HASH-CODE, a High-frequency Aware Spectral Hierarchical Contrastive Selective Coding method that integrates GNNs and PLMs into a unified model. Different from previous "cascaded architectures" that directly add GNN layers upon a PLM, our HASH-CODE relies on five self-supervised optimization objectives to facilitate thorough mutual enhancement between network and text signals in diverse granularities. Moreover, we show that existing contrastive objective learns the low-frequency component of the augmentation graph and propose a high-frequency component (HFC)-aware contrastive learning objective that makes the learned embeddings more distinctive. Extensive experiments on six real-world benchmarks substantiate the efficacy of our proposed approach. In addition, theoretical analysis and item embedding visualization provide insights into our model interoperability.