Microsoft Research Asia
Abstract:As Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative for their responsible development and customized applications. However, there still lack evaluations of LLMs values that fulfill three desirable goals. (1) Value Clarification: We expect to clarify the underlying values of LLMs precisely and comprehensively, while current evaluations focus narrowly on safety risks such as bias and toxicity. (2) Evaluation Validity: Existing static, open-source benchmarks are prone to data contamination and quickly become obsolete as LLMs evolve. Additionally, these discriminative evaluations uncover LLMs' knowledge about values, rather than valid assessments of LLMs' behavioral conformity to values. (3) Value Pluralism: The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment. To address these challenges, we presents the Value Compass Leaderboard, with three correspondingly designed modules. It (i) grounds the evaluation on motivationally distinct \textit{basic values to clarify LLMs' underlying values from a holistic view; (ii) applies a \textit{generative evolving evaluation framework with adaptive test items for evolving LLMs and direct value recognition from behaviors in realistic scenarios; (iii) propose a metric that quantifies LLMs alignment with a specific value as a weighted sum over multiple dimensions, with weights determined by pluralistic values.
Abstract:Vision-language models (VLMs) have advanced human-AI interaction but struggle with cultural understanding, often misinterpreting symbols, gestures, and artifacts due to biases in predominantly Western-centric training data. In this paper, we construct CultureVerse, a large-scale multimodal benchmark covering 19, 682 cultural concepts, 188 countries/regions, 15 cultural concepts, and 3 question types, with the aim of characterizing and improving VLMs' multicultural understanding capabilities. Then, we propose CultureVLM, a series of VLMs fine-tuned on our dataset to achieve significant performance improvement in cultural understanding. Our evaluation of 16 models reveals significant disparities, with a stronger performance in Western concepts and weaker results in African and Asian contexts. Fine-tuning on our CultureVerse enhances cultural perception, demonstrating cross-cultural, cross-continent, and cross-dataset generalization without sacrificing performance on models' general VLM benchmarks. We further present insights on cultural generalization and forgetting. We hope that this work could lay the foundation for more equitable and culturally aware multimodal AI systems.
Abstract:The emergence of large language models (LLMs) has sparked the possibility of about Artificial Superintelligence (ASI), a hypothetical AI system surpassing human intelligence. However, existing alignment paradigms struggle to guide such advanced AI systems. Superalignment, the alignment of AI systems with human values and safety requirements at superhuman levels of capability aims to addresses two primary goals -- scalability in supervision to provide high-quality guidance signals and robust governance to ensure alignment with human values. In this survey, we examine scalable oversight methods and potential solutions for superalignment. Specifically, we explore the concept of ASI, the challenges it poses, and the limitations of current alignment paradigms in addressing the superalignment problem. Then we review scalable oversight methods for superalignment. Finally, we discuss the key challenges and propose pathways for the safe and continual improvement of ASI systems. By comprehensively reviewing the current literature, our goal is provide a systematical introduction of existing methods, analyze their strengths and limitations, and discuss potential future directions.
Abstract:Despite the recent advancement of Large Langauge Models (LLMs), they struggle with complex queries often involving multiple conditions, common in real-world scenarios. We propose Thinking with Tables, a technique that assists LLMs to leverage tables for intermediate thinking aligning with human cognitive behavior. By introducing a pre-instruction that triggers an LLM to organize information in tables, our approach achieves a 40.29\% average relative performance increase, higher robustness, and show generalizability to different requests, conditions, or scenarios. We additionally show the influence of data structuredness for the model by comparing results from four distinct structuring levels that we introduce.
Abstract:Trending topics have become a significant part of modern social media, attracting users to participate in discussions of breaking events. However, they also bring in a new channel for poisoning attacks, resulting in negative impacts on society. Therefore, it is urgent to study this critical problem and develop effective strategies for defense. In this paper, we propose TrendSim, an LLM-based multi-agent system to simulate trending topics in social media under poisoning attacks. Specifically, we create a simulation environment for trending topics that incorporates a time-aware interaction mechanism, centralized message dissemination, and an interactive system. Moreover, we develop LLM-based human-like agents to simulate users in social media, and propose prototype-based attackers to replicate poisoning attacks. Besides, we evaluate TrendSim from multiple aspects to validate its effectiveness. Based on TrendSim, we conduct simulation experiments to study four critical problems about poisoning attacks on trending topics for social benefit.
Abstract:Role-playing is a crucial capability of Large Language Models (LLMs), enabling a wide range of practical applications, including intelligent non-player characters, digital twins, and emotional companions. Evaluating this capability in LLMs is challenging due to the complex dynamics involved in role-playing, such as maintaining character fidelity throughout a storyline and navigating open-ended narratives without a definitive ground truth. Current evaluation methods, which primarily focus on question-answering or conversational snapshots, fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing. In this paper, we propose CharacterBox, which is a simulation sandbox designed to generate situational fine-grained character behavior trajectories. These behavior trajectories enable a more comprehensive and in-depth evaluation of role-playing capabilities. CharacterBox consists of two main components: the character agent and the narrator agent. The character agent, grounded in psychological and behavioral science, exhibits human-like behaviors, while the narrator agent coordinates interactions between character agents and environmental changes. Additionally, we introduce two trajectory-based methods that leverage CharacterBox to enhance LLM performance. To reduce costs and facilitate the adoption of CharacterBox by public communities, we fine-tune two smaller models, CharacterNR and CharacterRM, as substitutes for GPT API calls, and demonstrate their competitive performance compared to advanced GPT APIs.
Abstract:Artificial intelligence has, so far, largely automated routine tasks, but what does it mean for the future of work if Large Language Models (LLMs) show creativity comparable to humans? To measure the creativity of LLMs holistically, the current study uses 13 creative tasks spanning three domains. We benchmark the LLMs against individual humans, and also take a novel approach by comparing them to the collective creativity of groups of humans. We find that the best LLMs (Claude and GPT-4) rank in the 52nd percentile against humans, and overall LLMs excel in divergent thinking and problem solving but lag in creative writing. When questioned 10 times, an LLM's collective creativity is equivalent to 8-10 humans. When more responses are requested, two additional responses of LLMs equal one extra human. Ultimately, LLMs, when optimally applied, may compete with a small group of humans in the future of work.
Abstract:Recent advancements in diffusion models trained on large-scale data have enabled the generation of indistinguishable human-level images, yet they often produce harmful content misaligned with human values, e.g., social bias, and offensive content. Despite extensive research on Large Language Models (LLMs), the challenge of Text-to-Image (T2I) model alignment remains largely unexplored. Addressing this problem, we propose LiVO (Lightweight Value Optimization), a novel lightweight method for aligning T2I models with human values. LiVO only optimizes a plug-and-play value encoder to integrate a specified value principle with the input prompt, allowing the control of generated images over both semantics and values. Specifically, we design a diffusion model-tailored preference optimization loss, which theoretically approximates the Bradley-Terry model used in LLM alignment but provides a more flexible trade-off between image quality and value conformity. To optimize the value encoder, we also develop a framework to automatically construct a text-image preference dataset of 86k (prompt, aligned image, violating image, value principle) samples. Without updating most model parameters and through adaptive value selection from the input prompt, LiVO significantly reduces harmful outputs and achieves faster convergence, surpassing several strong baselines and taking an initial step towards ethically aligned T2I models.
Abstract:With the growing prevalence of generative artificial intelligence (AI), an increasing amount of content is no longer exclusively generated by humans but by generative AI models with human guidance. This shift presents notable challenges for the delineation of originality due to the varying degrees of human contribution in AI-assisted works. This study raises the research question of measuring human contribution in AI-assisted content generation and introduces a framework to address this question that is grounded in information theory. By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation. Our experimental results demonstrate that the proposed measure effectively discriminates between varying degrees of human contribution across multiple creative domains. We hope that this work lays a foundation for measuring human contributions in AI-assisted content generation in the era of generative AI.
Abstract:The rapid progress in Large Language Models (LLMs) poses potential risks such as generating unethical content. Assessing LLMs' values can help expose their misalignment, but relies on reference-free evaluators, e.g., fine-tuned LLMs or close-source ones like GPT-4, to identify values reflected in generated responses. Nevertheless, these evaluators face two challenges in open-ended value evaluation: they should align with changing human value definitions with minimal annotation, against their own bias (adaptability), and detect varying value expressions and scenarios robustly (generalizability). To handle these challenges, we introduce CLAVE, a novel framework which integrates two complementary LLMs, a large one to extract high-level value concepts from a few human labels, leveraging its extensive knowledge and generalizability, and a smaller one fine-tuned on such concepts to better align with human value understanding. This dual-model approach enables calibration with any value systems using <100 human-labeled samples per value type. Then we present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) tuples across diverse domains, covering three major value systems. We benchmark the capabilities of 12+ popular LLM evaluators and analyze their strengths and weaknesses. Our findings reveal that combining fine-tuned small models and prompt-based large ones serves as a superior balance in value evaluation.