Microsoft Research Asia
Abstract:Recent advancements in diffusion models trained on large-scale data have enabled the generation of indistinguishable human-level images, yet they often produce harmful content misaligned with human values, e.g., social bias, and offensive content. Despite extensive research on Large Language Models (LLMs), the challenge of Text-to-Image (T2I) model alignment remains largely unexplored. Addressing this problem, we propose LiVO (Lightweight Value Optimization), a novel lightweight method for aligning T2I models with human values. LiVO only optimizes a plug-and-play value encoder to integrate a specified value principle with the input prompt, allowing the control of generated images over both semantics and values. Specifically, we design a diffusion model-tailored preference optimization loss, which theoretically approximates the Bradley-Terry model used in LLM alignment but provides a more flexible trade-off between image quality and value conformity. To optimize the value encoder, we also develop a framework to automatically construct a text-image preference dataset of 86k (prompt, aligned image, violating image, value principle) samples. Without updating most model parameters and through adaptive value selection from the input prompt, LiVO significantly reduces harmful outputs and achieves faster convergence, surpassing several strong baselines and taking an initial step towards ethically aligned T2I models.
Abstract:With the growing prevalence of generative artificial intelligence (AI), an increasing amount of content is no longer exclusively generated by humans but by generative AI models with human guidance. This shift presents notable challenges for the delineation of originality due to the varying degrees of human contribution in AI-assisted works. This study raises the research question of measuring human contribution in AI-assisted content generation and introduces a framework to address this question that is grounded in information theory. By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation. Our experimental results demonstrate that the proposed measure effectively discriminates between varying degrees of human contribution across multiple creative domains. We hope that this work lays a foundation for measuring human contributions in AI-assisted content generation in the era of generative AI.
Abstract:The rapid progress in Large Language Models (LLMs) poses potential risks such as generating unethical content. Assessing LLMs' values can help expose their misalignment, but relies on reference-free evaluators, e.g., fine-tuned LLMs or close-source ones like GPT-4, to identify values reflected in generated responses. Nevertheless, these evaluators face two challenges in open-ended value evaluation: they should align with changing human value definitions with minimal annotation, against their own bias (adaptability), and detect varying value expressions and scenarios robustly (generalizability). To handle these challenges, we introduce CLAVE, a novel framework which integrates two complementary LLMs, a large one to extract high-level value concepts from a few human labels, leveraging its extensive knowledge and generalizability, and a smaller one fine-tuned on such concepts to better align with human value understanding. This dual-model approach enables calibration with any value systems using <100 human-labeled samples per value type. Then we present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) tuples across diverse domains, covering three major value systems. We benchmark the capabilities of 12+ popular LLM evaluators and analyze their strengths and weaknesses. Our findings reveal that combining fine-tuned small models and prompt-based large ones serves as a superior balance in value evaluation.
Abstract:Warning: this paper contains model outputs exhibiting unethical information. Large Language Models (LLMs) have achieved significant breakthroughs, but their generated unethical content poses potential risks. Measuring value alignment of LLMs becomes crucial for their regulation and responsible deployment. Numerous datasets have been constructed to assess social bias, toxicity, and ethics in LLMs, but they suffer from evaluation chronoeffect, that is, as models rapidly evolve, existing data becomes leaked or undemanding, overestimating ever-developing LLMs. To tackle this problem, we propose GETA, a novel generative evolving testing approach that dynamically probes the underlying moral baselines of LLMs. Distinct from previous adaptive testing methods that rely on static datasets with limited difficulty, GETA incorporates an iteratively-updated item generator which infers each LLM's moral boundaries and generates difficulty-tailored testing items, accurately reflecting the true alignment extent. This process theoretically learns a joint distribution of item and model response, with item difficulty and value conformity as latent variables, where the generator co-evolves with the LLM, addressing chronoeffect. We evaluate various popular LLMs with diverse capabilities and demonstrate that GETA can create difficulty-matching testing items and more accurately assess LLMs' values, better consistent with their performance on unseen OOD and i.i.d. items, laying the groundwork for future evaluation paradigms.
Abstract:Large language models (LLMs) have achieved remarkable progress in linguistic tasks, necessitating robust evaluation frameworks to understand their capabilities and limitations. Inspired by Feynman's principle of understanding through creation, we introduce a self-knowledge evaluation framework that is easy to implement, evaluating models on their ability to comprehend and respond to self-generated questions. Our findings, based on testing multiple models across diverse tasks, reveal significant gaps in the model's self-knowledge ability. Further analysis indicates these gaps may be due to misalignment with human attention mechanisms. Additionally, fine-tuning on self-generated math task may enhance the model's math performance, highlighting the potential of the framework for efficient and insightful model evaluation and may also contribute to the improvement of LLMs.
Abstract:This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
Abstract:Cultural bias is pervasive in many large language models (LLMs), largely due to the deficiency of data representative of different cultures. Typically, cultural datasets and benchmarks are constructed either by extracting subsets of existing datasets or by aggregating from platforms such as Wikipedia and social media. However, these approaches are highly dependent on real-world data and human annotations, making them costly and difficult to scale. Inspired by cognitive theories on social communication, this paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection. CulturePark simulates cross-cultural human communication with LLM-based agents playing roles in different cultures. It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs. Using CulturePark, we generated 41,000 cultural samples to fine-tune eight culture-specific LLMs. We evaluated these models across three downstream tasks: content moderation, cultural alignment, and cultural education. Results show that for content moderation, our GPT-3.5-based models either match or outperform GPT-4 on datasets. Regarding cultural alignment, our models surpass GPT-4 on Hofstede's VSM 13 framework. Furthermore, for cultural education of human participants, our models demonstrate superior outcomes in both learning efficacy and user experience compared to GPT-4. CulturePark proves an important step in addressing cultural bias and advancing the democratization of AI, highlighting the critical role of culturally inclusive data in model training.
Abstract:Recent breakthroughs in large models have highlighted the critical significance of data scale, labels and modals. In this paper, we introduce MS MARCO Web Search, the first large-scale information-rich web dataset, featuring millions of real clicked query-document labels. This dataset closely mimics real-world web document and query distribution, provides rich information for various kinds of downstream tasks and encourages research in various areas, such as generic end-to-end neural indexer models, generic embedding models, and next generation information access system with large language models. MS MARCO Web Search offers a retrieval benchmark with three web retrieval challenge tasks that demand innovations in both machine learning and information retrieval system research domains. As the first dataset that meets large, real and rich data requirements, MS MARCO Web Search paves the way for future advancements in AI and system research. MS MARCO Web Search dataset is available at: https://github.com/microsoft/MS-MARCO-Web-Search.
Abstract:Recent advancements in Large Language Models (LLMs) have revolutionized the AI field but also pose potential safety and ethical risks. Deciphering LLMs' embedded values becomes crucial for assessing and mitigating their risks. Despite extensive investigation into LLMs' values, previous studies heavily rely on human-oriented value systems in social sciences. Then, a natural question arises: Do LLMs possess unique values beyond those of humans? Delving into it, this work proposes a novel framework, ValueLex, to reconstruct LLMs' unique value system from scratch, leveraging psychological methodologies from human personality/value research. Based on Lexical Hypothesis, ValueLex introduces a generative approach to elicit diverse values from 30+ LLMs, synthesizing a taxonomy that culminates in a comprehensive value framework via factor analysis and semantic clustering. We identify three core value dimensions, Competence, Character, and Integrity, each with specific subdimensions, revealing that LLMs possess a structured, albeit non-human, value system. Based on this system, we further develop tailored projective tests to evaluate and analyze the value inclinations of LLMs across different model sizes, training methods, and data sources. Our framework fosters an interdisciplinary paradigm of understanding LLMs, paving the way for future AI alignment and regulation.
Abstract:Current open-source large language models (LLMs) are often undergone careful safety alignment before public release. Some attack methods have also been proposed that help check for safety vulnerabilities in LLMs to ensure alignment robustness. However, many of these methods have moderate attack success rates. Even when successful, the harmfulness of their outputs cannot be guaranteed, leading to suspicions that these methods have not accurately identified the safety vulnerabilities of LLMs. In this paper, we introduce a LLM attack method utilizing concept-based model explanation, where we extract safety concept activation vectors (SCAVs) from LLMs' activation space, enabling efficient attacks on well-aligned LLMs like LLaMA-2, achieving near 100% attack success rate as if LLMs are completely unaligned. This suggests that LLMs, even after thorough safety alignment, could still pose potential risks to society upon public release. To evaluate the harmfulness of outputs resulting with various attack methods, we propose a comprehensive evaluation method that reduces the potential inaccuracies of existing evaluations, and further validate that our method causes more harmful content. Additionally, we discover that the SCAVs show some transferability across different open-source LLMs.