Abstract:Intelligent Tutoring Systems (ITSs) have revolutionized education by offering personalized learning experiences. However, as goal-oriented learning, which emphasizes efficiently achieving specific objectives, becomes increasingly important in professional contexts, existing ITSs often struggle to deliver this type of targeted learning experience. In this paper, we propose GenMentor, an LLM-powered multi-agent framework designed to deliver goal-oriented, personalized learning within ITS. GenMentor begins by accurately mapping learners' goals to required skills using a fine-tuned LLM trained on a custom goal-to-skill dataset. After identifying the skill gap, it schedules an efficient learning path using an evolving optimization approach, driven by a comprehensive and dynamic profile of learners' multifaceted status. Additionally, GenMentor tailors learning content with an exploration-drafting-integration mechanism to align with individual learner needs. Extensive automated and human evaluations demonstrate GenMentor's effectiveness in learning guidance and content quality. Furthermore, we have deployed it in practice and also implemented it as an application. Practical human study with professional learners further highlights its effectiveness in goal alignment and resource targeting, leading to enhanced personalization. Supplementary resources are available at https://github.com/GeminiLight/gen-mentor.
Abstract:Transparent surfaces, such as glass, create complex reflections that obscure images and challenge downstream computer vision applications. We introduce Flash-Split, a robust framework for separating transmitted and reflected light using a single (potentially misaligned) pair of flash/no-flash images. Our core idea is to perform latent-space reflection separation while leveraging the flash cues. Specifically, Flash-Split consists of two stages. Stage 1 separates apart the reflection latent and transmission latent via a dual-branch diffusion model conditioned on an encoded flash/no-flash latent pair, effectively mitigating the flash/no-flash misalignment issue. Stage 2 restores high-resolution, faithful details to the separated latents, via a cross-latent decoding process conditioned on the original images before separation. By validating Flash-Split on challenging real-world scenes, we demonstrate state-of-the-art reflection separation performance and significantly outperform the baseline methods.
Abstract:Video Frame Interpolation aims to recover realistic missing frames between observed frames, generating a high-frame-rate video from a low-frame-rate video. However, without additional guidance, the large motion between frames makes this problem ill-posed. Event-based Video Frame Interpolation (EVFI) addresses this challenge by using sparse, high-temporal-resolution event measurements as motion guidance. This guidance allows EVFI methods to significantly outperform frame-only methods. However, to date, EVFI methods have relied on a limited set of paired event-frame training data, severely limiting their performance and generalization capabilities. In this work, we overcome the limited data challenge by adapting pre-trained video diffusion models trained on internet-scale datasets to EVFI. We experimentally validate our approach on real-world EVFI datasets, including a new one that we introduce. Our method outperforms existing methods and generalizes across cameras far better than existing approaches.
Abstract:Portfolio management is an important yet challenging task in AI for FinTech, which aims to allocate investors' budgets among different assets to balance the risk and return of an investment. In this study, we propose a general Multi-objectIve framework with controLLable rIsk for pOrtfolio maNagement (MILLION), which consists of two main phases, i.e., return-related maximization and risk control. Specifically, in the return-related maximization phase, we introduce two auxiliary objectives, i.e., return rate prediction, and return rate ranking, combined with portfolio optimization to remit the overfitting problem and improve the generalization of the trained model to future markets. Subsequently, in the risk control phase, we propose two methods, i.e., portfolio interpolation and portfolio improvement, to achieve fine-grained risk control and fast risk adaption to a user-specified risk level. For the portfolio interpolation method, we theoretically prove that the risk can be perfectly controlled if the to-be-set risk level is in a proper interval. In addition, we also show that the return rate of the adjusted portfolio after portfolio interpolation is no less than that of the min-variance optimization, as long as the model in the reward maximization phase is effective. Furthermore, the portfolio improvement method can achieve greater return rates while keeping the same risk level compared to portfolio interpolation. Extensive experiments are conducted on three real-world datasets. The results demonstrate the effectiveness and efficiency of the proposed framework.
Abstract:High-dimensional approximate $K$ nearest neighbor search (AKNN) is a fundamental task for various applications, including information retrieval. Most existing algorithms for AKNN can be decomposed into two main components, i.e., candidate generation and distance comparison operations (DCOs). While different methods have unique ways of generating candidates, they all share the same DCO process. In this study, we focus on accelerating the process of DCOs that dominates the time cost in most existing AKNN algorithms. To achieve this, we propose an \underline{D}ata-\underline{A}ware \underline{D}istance \underline{E}stimation approach, called \emph{DADE}, which approximates the \emph{exact} distance in a lower-dimensional space. We theoretically prove that the distance estimation in \emph{DADE} is \emph{unbiased} in terms of data distribution. Furthermore, we propose an optimized estimation based on the unbiased distance estimation formulation. In addition, we propose a hypothesis testing approach to adaptively determine the number of dimensions needed to estimate the \emph{exact} distance with sufficient confidence. We integrate \emph{DADE} into widely-used AKNN search algorithms, e.g., \emph{IVF} and \emph{HNSW}, and conduct extensive experiments to demonstrate the superiority.
Abstract:As an essential resource management problem in network virtualization, virtual network embedding (VNE) aims to allocate the finite resources of physical network to sequentially arriving virtual network requests (VNRs) with different resource demands. Since this is an NP-hard combinatorial optimization problem, many efforts have been made to provide viable solutions. However, most existing approaches have either ignored the admission control of VNRs, which has a potential impact on long-term performances, or not fully exploited the temporal and topological features of the physical network and VNRs. In this paper, we propose a deep Hierarchical Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for VNE, named HRL-ACRA. Specifically, the whole VNE process is decomposed into an upper-level policy for deciding whether to admit the arriving VNR or not and a lower-level policy for allocating resources of the physical network to meet the requirement of VNR through the HRL approach. Considering the proximal policy optimization as the basic training algorithm, we also adopt the average reward method to address the infinite horizon problem of the upper-level agent and design a customized multi-objective intrinsic reward to alleviate the sparse reward issue of the lower-level agent. Moreover, we develop a deep feature-aware graph neural network to capture the features of VNR and physical network and exploit a sequence-to-sequence model to generate embedding actions iteratively. Finally, extensive experiments are conducted in various settings, and show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue. Our code is available at \url{https://github.com/GeminiLight/hrl-acra}.
Abstract:Generative 3D Painting is among the top productivity boosters in high-resolution 3D asset management and recycling. Ever since text-to-image models became accessible for inference on consumer hardware, the performance of 3D Painting methods has consistently improved and is currently close to plateauing. At the core of most such models lies denoising diffusion in the latent space, an inherently time-consuming iterative process. Multiple techniques have been developed recently to accelerate generation and reduce sampling iterations by orders of magnitude. Designed for 2D generative imaging, these techniques do not come with recipes for lifting them into 3D. In this paper, we address this shortcoming by proposing a Latent Consistency Model (LCM) adaptation for the task at hand. We analyze the strengths and weaknesses of the proposed model and evaluate it quantitatively and qualitatively. Based on the Objaverse dataset samples study, our 3D painting method attains strong preference in all evaluations. Source code is available at https://github.com/kongdai123/consistency2.
Abstract:Virtual network embedding (VNE) is an essential resource allocation task in network virtualization, aiming to map virtual network requests (VNRs) onto physical infrastructure. Reinforcement learning (RL) has recently emerged as a promising solution to this problem. However, existing RL-based VNE methods are limited by the unidirectional action design and one-size-fits-all training strategy, resulting in restricted searchability and generalizability. In this paper, we propose a FLexible And Generalizable RL framework for VNE, named FlagVNE. Specifically, we design a bidirectional action-based Markov decision process model that enables the joint selection of virtual and physical nodes, thus improving the exploration flexibility of solution space. To tackle the expansive and dynamic action space, we design a hierarchical decoder to generate adaptive action probability distributions and ensure high training efficiency. Furthermore, to overcome the generalization issue for varying VNR sizes, we propose a meta-RL-based training method with a curriculum scheduling strategy, facilitating specialized policy training for each VNR size. Finally, extensive experimental results show the effectiveness of FlagVNE across multiple key metrics. Our code is available at GitHub (https://github.com/GeminiLight/flag-vne).
Abstract:Estimating the pose of objects from images is a crucial task of 3D scene understanding, and recent approaches have shown promising results on very large benchmarks. However, these methods experience a significant performance drop when dealing with unseen objects. We believe that it results from the limited generalizability of image features. To address this problem, we have an in-depth analysis on the features of diffusion models, e.g. Stable Diffusion, which hold substantial potential for modeling unseen objects. Based on this analysis, we then innovatively introduce these diffusion features for object pose estimation. To achieve this, we propose three distinct architectures that can effectively capture and aggregate diffusion features of different granularity, greatly improving the generalizability of object pose estimation. Our approach outperforms the state-of-the-art methods by a considerable margin on three popular benchmark datasets, LM, O-LM, and T-LESS. In particular, our method achieves higher accuracy than the previous best arts on unseen objects: 98.2% vs. 93.5% on Unseen LM, 85.9% vs. 76.3% on Unseen O-LM, showing the strong generalizability of our method. Our code is released at https://github.com/Tianfu18/diff-feats-pose.
Abstract:Graph Convolutional Networks (GCNs) have become pivotal in recommendation systems for learning user and item embeddings by leveraging the user-item interaction graph's node information and topology. However, these models often face the famous over-smoothing issue, leading to indistinct user and item embeddings and reduced personalization. Traditional desmoothing methods in GCN-based systems are model-specific, lacking a universal solution. This paper introduces a novel, model-agnostic approach named \textbf{D}esmoothing Framework for \textbf{G}CN-based \textbf{R}ecommendation Systems (\textbf{DGR}). It effectively addresses over-smoothing on general GCN-based recommendation models by considering both global and local perspectives. Specifically, we first introduce vector perturbations during each message passing layer to penalize the tendency of node embeddings approximating overly to be similar with the guidance of the global topological structure. Meanwhile, we further develop a tailored-design loss term for the readout embeddings to preserve the local collaborative relations between users and their neighboring items. In particular, items that exhibit a high correlation with neighboring items are also incorporated to enhance the local topological information. To validate our approach, we conduct extensive experiments on 5 benchmark datasets based on 5 well-known GCN-based recommendation models, demonstrating the effectiveness and generalization of our proposed framework.