Abstract:Traffic prediction targets forecasting future traffic conditions using historical traffic data, serving a critical role in urban computing and transportation management. To mitigate the scarcity of traffic data while maintaining data privacy, numerous Federated Traffic Knowledge Transfer (FTT) approaches have been developed, which use transfer learning and federated learning to transfer traffic knowledge from data-rich cities to data-scarce cities, enhancing traffic prediction capabilities for the latter. However, current FTT approaches face challenges such as privacy leakage, cross-city data distribution discrepancies, low data quality, and inefficient knowledge transfer, limiting their privacy protection, effectiveness, robustness, and efficiency in real-world applications. To this end, we propose FedTT, an effective, efficient, and privacy-aware cross-city traffic knowledge transfer framework that transforms the traffic data domain from the data-rich cities and trains traffic models using the transformed data for the data-scarce cities. First, to safeguard data privacy, we propose a traffic secret transmission method that securely transmits and aggregates traffic domain-transformed data from source cities using a lightweight secret aggregation approach. Second, to mitigate the impact of traffic data distribution discrepancies on model performance, we introduce a traffic domain adapter to uniformly transform traffic data from the source cities' domains to that of the target city. Third, to improve traffic data quality, we design a traffic view imputation method to fill in and predict missing traffic data. Finally, to enhance transfer efficiency, FedTT is equipped with a federated parallel training method that enables the simultaneous training of multiple modules. Extensive experiments using 4 real-life datasets demonstrate that FedTT outperforms the 14 state-of-the-art baselines.
Abstract:The rise of large language models has opened new avenues for users seeking legal advice. However, users often lack professional legal knowledge, which can lead to questions that omit critical information. This deficiency makes it challenging for traditional legal question-answering systems to accurately identify users' actual needs, often resulting in imprecise or generalized advice. In this work, we develop a legal question-answering system called Intelligent Legal Assistant, which interacts with users to precisely capture their needs. When a user poses a question, the system requests that the user select their geographical location to pinpoint the applicable laws. It then generates clarifying questions and options based on the key information missing from the user's initial question. This allows the user to select and provide the necessary details. Once all necessary information is provided, the system produces an in-depth legal analysis encompassing three aspects: overall conclusion, jurisprudential analysis, and resolution suggestions.