Abstract:Federated Learning(FL) is popular as a privacy-preserving machine learning paradigm for generating a single model on decentralized data. However, statistical heterogeneity poses a significant challenge for FL. As a subfield of FL, personalized FL (pFL) has attracted attention for its ability to achieve personalized models that perform well on non-independent and identically distributed (Non-IID) data. However, existing pFL methods are limited in terms of leveraging the global model's knowledge to enhance generalization while achieving personalization on local data. To address this, we proposed a new method personalized Federated learning with Adaptive Feature Aggregation and Knowledge Transfer (FedAFK), to train better feature extractors while balancing generalization and personalization for participating clients, which improves the performance of personalized models on Non-IID data. We conduct extensive experiments on three datasets in two widely-used heterogeneous settings and show the superior performance of our proposed method over thirteen state-of-the-art baselines.
Abstract:The public sharing of user information opens the door for adversaries to infer private data, leading to privacy breaches and facilitating malicious activities. While numerous studies have concentrated on privacy leakage via public user attributes, the threats associated with the exposure of user relationships, particularly through network structure, are often neglected. This study aims to fill this critical gap by advancing the understanding and protection against privacy risks emanating from network structure, moving beyond direct connections with neighbors to include the broader implications of indirect network structural patterns. To achieve this, we first investigate the problem of Graph Privacy Leakage via Structure (GPS), and introduce a novel measure, the Generalized Homophily Ratio, to quantify the various mechanisms contributing to privacy breach risks in GPS. Based on this insight, we develop a novel graph private attribute inference attack, which acts as a pivotal tool for evaluating the potential for privacy leakage through network structures under worst-case scenarios. To protect users' private data from such vulnerabilities, we propose a graph data publishing method incorporating a learnable graph sampling technique, effectively transforming the original graph into a privacy-preserving version. Extensive experiments demonstrate that our attack model poses a significant threat to user privacy, and our graph data publishing method successfully achieves the optimal privacy-utility trade-off compared to baselines.
Abstract:Distance-based time series anomaly detection methods are prevalent due to their relative non-parametric nature and interpretability. However, the commonly used Euclidean distance is sensitive to noise. While existing works have explored dynamic time warping (DTW) for its robustness, they only support supervised tasks over multivariate time series (MTS), leaving a scarcity of unsupervised methods. In this work, we propose FCM-wDTW, an unsupervised distance metric learning method for anomaly detection over MTS, which encodes raw data into latent space and reveals normal dimension relationships through cluster centers. FCM-wDTW introduces locally weighted DTW into fuzzy C-means clustering and learns the optimal latent space efficiently, enabling anomaly identification via data reconstruction. Experiments with 11 different types of benchmarks demonstrate our method's competitive accuracy and efficiency.
Abstract:As blockchain technology becomes more and more popular, a typical financial scam, the Ponzi scheme, has also emerged in the blockchain platform Ethereum. This Ponzi scheme deployed through smart contracts, also known as the smart Ponzi scheme, has caused a lot of economic losses and negative impacts. Existing methods for detecting smart Ponzi schemes on Ethereum mainly rely on bytecode features, opcode features, account features, and transaction behavior features of smart contracts, and such methods lack interpretability and sustainability. In this paper, we propose SourceP, a method to detect smart Ponzi schemes on the Ethereum platform using pre-training models and data flow, which only requires using the source code of smart contracts as features to explore the possibility of detecting smart Ponzi schemes from another direction. SourceP reduces the difficulty of data acquisition and feature extraction of existing detection methods while increasing the interpretability of the model. Specifically, we first convert the source code of a smart contract into a data flow graph and then introduce a pre-training model based on learning code representations to build a classification model to identify Ponzi schemes in smart contracts. The experimental results show that SourceP achieves 87.2\% recall and 90.7\% F-score for detecting smart Ponzi schemes within Ethereum's smart contract dataset, outperforming state-of-the-art methods in terms of performance and sustainability. We also demonstrate through additional experiments that pre-training models and data flow play an important contribution to SourceP, as well as proving that SourceP has a good generalization ability.