Abstract:Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs). Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG. More recent works have proposed aligning retrievers with the preference signals of LLMs. However, these preference signals are often difficult for dense retrievers, which typically have weaker language capabilities, to understand and learn effectively. Drawing inspiration from pedagogical theories like Guided Discovery Learning, we propose a novel framework, FiGRet (Fine-grained Guidance for Retrievers), which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective to guide the learning of retrievers. Specifically, our method utilizes LLMs to construct easy-to-understand examples from samples where the retriever performs poorly, focusing on three learning objectives highly relevant to the RAG scenario: relevance, comprehensiveness, and purity. These examples serve as scaffolding to ultimately align the retriever with the LLM's preferences. Furthermore, we employ a dual curriculum learning strategy and leverage the reciprocal feedback between LLM and retriever to further enhance the performance of the RAG system. A series of experiments demonstrate that our proposed framework enhances the performance of RAG systems equipped with different retrievers and is applicable to various LLMs.
Abstract:Structure-based drug design aims at generating high affinity ligands with prior knowledge of 3D target structures. Existing methods either use conditional generative model to learn the distribution of 3D ligands given target binding sites, or iteratively modify molecules to optimize a structure-based activity estimator. The former is highly constrained by data quantity and quality, which leaves optimization-based approaches more promising in practical scenario. However, existing optimization-based approaches choose to edit molecules in 2D space, and use molecular docking to estimate the activity using docking predicted 3D target-ligand complexes. The misalignment between the action space and the objective hinders the performance of these models, especially for those employ deep learning for acceleration. In this work, we propose MolEdit3D to combine 3D molecular generation with optimization frameworks. We develop a novel 3D graph editing model to generate molecules using fragments, and pre-train this model on abundant 3D ligands for learning target-independent properties. Then we employ a target-guided self-learning strategy to improve target-related properties using self-sampled molecules. MolEdit3D achieves state-of-the-art performance on majority of the evaluation metrics, and demonstrate strong capability of capturing both target-dependent and -independent properties.
Abstract:Large language models (LLMs) have made significant progress in code generation tasks, but their performance in tackling programming problems with complex data structures and algorithms remains suboptimal. To address this issue, we propose an in-context learning approach that guides LLMs to debug by using a "print debugging" method, which involves inserting print statements to trace and analysing logs for fixing the bug. We collect a Leetcode problem dataset and evaluate our method using the Leetcode online judging system. Experiments with GPT-4 demonstrate the effectiveness of our approach, outperforming rubber duck debugging in easy and medium-level Leetcode problems by 1.5% and 17.9%.
Abstract:In this paper, we introduce "InfiAgent-DABench", the first benchmark specifically designed to evaluate LLM-based agents in data analysis tasks. This benchmark contains DAEval, a dataset consisting of 311 data analysis questions derived from 55 CSV files, and an agent framework to evaluate LLMs as data analysis agents. We adopt a format-prompting technique, ensuring questions to be closed-form that can be automatically evaluated. Our extensive benchmarking of 23 state-of-the-art LLMs uncovers the current challenges encountered in data analysis tasks. In addition, we have developed DAAgent, a specialized agent trained on instruction-tuning datasets. Evaluation datasets and toolkits for InfiAgent-DABench are released at https://github.com/InfiAgent/InfiAgent.
Abstract:People perceive the world with multiple senses (e.g., through hearing sounds, reading words and seeing objects). However, most existing AI systems only process an individual modality. This paper presents an approach that excels at handling multiple modalities of information with a single model. In our "{SkillNet}" model, different parts of the parameters are specialized for processing different modalities. Unlike traditional dense models that always activate all the model parameters, our model sparsely activates parts of the parameters whose skills are relevant to the task. Such model design enables SkillNet to learn skills in a more interpretable way. We develop our model for five modalities including text, image, sound, video and code. Results show that, SkillNet performs comparably to five modality-specific fine-tuned models. Moreover, our model supports self-supervised pretraining with the same sparsely activated way, resulting in better initialized parameters for different modalities. We find that pretraining significantly improves the performance of SkillNet on five modalities, on par with or even better than baselines with modality-specific pretraining. On the task of Chinese text-to-image retrieval, our final system achieves higher accuracy than existing leading systems including Wukong{ViT-B} and Wenlan 2.0 while using less number of activated parameters.
Abstract:Legal artificial intelligence (LegalAI) aims to benefit legal systems with the technology of artificial intelligence, especially natural language processing (NLP). Recently, inspired by the success of pre-trained language models (PLMs) in the generic domain, many LegalAI researchers devote their effort to apply PLMs to legal tasks. However, utilizing PLMs to address legal tasks is still challenging, as the legal documents usually consist of thousands of tokens, which is far longer than the length that mainstream PLMs can process. In this paper, we release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding. We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering. The experimental results demonstrate that our model can achieve promising improvement on tasks with long documents as inputs.