Abstract:The in-image machine translation task involves translating text embedded within images, with the translated results presented in image format. While this task has numerous applications in various scenarios such as film poster translation and everyday scene image translation, existing methods frequently neglect the aspect of consistency throughout this process. We propose the need to uphold two types of consistency in this task: translation consistency and image generation consistency. The former entails incorporating image information during translation, while the latter involves maintaining consistency between the style of the text-image and the original image, ensuring background integrity. To address these consistency requirements, we introduce a novel two-stage framework named HCIIT (High-Consistency In-Image Translation) which involves text-image translation using a multimodal multilingual large language model in the first stage and image backfilling with a diffusion model in the second stage. Chain of thought learning is utilized in the first stage to enhance the model's ability to leverage image information during translation. Subsequently, a diffusion model trained for style-consistent text-image generation ensures uniformity in text style within images and preserves background details. A dataset comprising 400,000 style-consistent pseudo text-image pairs is curated for model training. Results obtained on both curated test sets and authentic image test sets validate the effectiveness of our framework in ensuring consistency and producing high-quality translated images.
Abstract:Recent Large Vision-Language Models (LVLMs) have shown promising reasoning capabilities on text-rich images from charts, tables, and documents. However, the abundant text within such images may increase the model's sensitivity to language. This raises the need to evaluate LVLM performance on cross-lingual text-rich visual inputs, where the language in the image differs from the language of the instructions. To address this, we introduce XT-VQA (Cross-Lingual Text-Rich Visual Question Answering), a benchmark designed to assess how LVLMs handle language inconsistency between image text and questions. XT-VQA integrates five existing text-rich VQA datasets and a newly collected dataset, XPaperQA, covering diverse scenarios that require faithful recognition and comprehension of visual information despite language inconsistency. Our evaluation of prominent LVLMs on XT-VQA reveals a significant drop in performance for cross-lingual scenarios, even for models with multilingual capabilities. A mutual information analysis suggests that this performance gap stems from cross-lingual questions failing to adequately activate relevant visual information. To mitigate this issue, we propose MVCL-MI (Maximization of Vision-Language Cross-Lingual Mutual Information), where a visual-text cross-lingual alignment is built by maximizing mutual information between the model's outputs and visual information. This is achieved by distilling knowledge from monolingual to cross-lingual settings through KL divergence minimization, where monolingual output logits serve as a teacher. Experimental results on the XT-VQA demonstrate that MVCL-MI effectively reduces the visual-text cross-lingual performance disparity while preserving the inherent capabilities of LVLMs, shedding new light on the potential practice for improving LVLMs. Codes are available at: https://github.com/Stardust-y/XTVQA.git
Abstract:Current large language models (LLMs) often exhibit imbalances in multilingual capabilities and cultural adaptability, largely due to their English-centric pretraining data. To address this imbalance, we propose a probing method named XTransplant that explores cross-lingual latent interactions via cross-lingual feed-forward transplantation during inference stage, with the hope of enabling the model to leverage the strengths of both English and non-English languages. Through extensive pilot experiments, we empirically prove that both the multilingual capabilities and cultural adaptability of LLMs hold the potential to be significantly improved by XTransplant, respectively from En -> non-En and non-En -> En, highlighting the underutilization of current LLMs' multilingual potential. And the patterns observed in these pilot experiments further motivate an offline scaling inference strategy, which demonstrates consistent performance improvements in multilingual and culture-aware tasks, sometimes even surpassing multilingual supervised fine-tuning. And we do hope our further analysis and discussion could help gain deeper insights into XTransplant mechanism.
Abstract:Function calling significantly extends the application boundary of large language models, where high-quality and diverse training data is critical for unlocking this capability. However, real function-calling data is quite challenging to collect and annotate, while synthetic data generated by existing pipelines tends to lack coverage and accuracy. In this paper, we present ToolACE, an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data. ToolACE leverages a novel self-evolution synthesis process to curate a comprehensive API pool of 26,507 diverse APIs. Dialogs are further generated through the interplay among multiple agents, guided by a formalized thinking process. To ensure data accuracy, we implement a dual-layer verification system combining rule-based and model-based checks. We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard, rivaling the latest GPT-4 models. Our model and a subset of the data are publicly available at https://huggingface.co/Team-ACE.
Abstract:Despite the impressive performance on information-seeking tasks, large language models (LLMs) still struggle with hallucinations. Attributed LLMs, which augment generated text with in-line citations, have shown potential in mitigating hallucinations and improving verifiability. However, current approaches suffer from suboptimal citation quality due to their reliance on in-context learning. Furthermore, the practice of citing only coarse document identifiers makes it challenging for users to perform fine-grained verification. In this work, we introduce FRONT, a training framework designed to teach LLMs to generate Fine-Grained Grounded Citations. By grounding model outputs in fine-grained supporting quotes, these quotes guide the generation of grounded and consistent responses, not only improving citation quality but also facilitating fine-grained verification. Experiments on the ALCE benchmark demonstrate the efficacy of FRONT in generating superior grounded responses and highly supportive citations. With LLaMA-2-7B, the framework significantly outperforms all the baselines, achieving an average of 14.21% improvement in citation quality across all datasets, even surpassing ChatGPT.
Abstract:Large language model (LLM) leads to a surge of autonomous GUI agents for smartphone, which completes a task triggered by natural language through predicting a sequence of actions of API. Even though the task highly relies on past actions and visual observations, existing studies typical consider little semantic information carried out by intermediate screenshots and screen operations. To address this, this work presents Chain-of-Action-Thought (dubbed CoAT), which takes the description of the previous actions, the current screen, and more importantly the action thinking of what actions should be performed and the outcomes led by the chosen action. We demonstrate that, in a zero-shot setting upon an off-the-shell LLM, CoAT significantly improves the goal progress compared to standard context modeling. To further facilitate the research in this line, we construct a benchmark Android-In-The-Zoo (AitZ), which contains 18,643 screen-action pairs together with chain-of-action-thought annotations. Experiments show that fine-tuning a 200M model on our AitZ dataset achieves on par performance with CogAgent-Chat-18B.
Abstract:Autoregressive and diffusion models drive the recent breakthroughs on text-to-image generation. Despite their huge success of generating high-realistic images, a common shortcoming of these models is their high inference latency - autoregressive models run more than a thousand times successively to produce image tokens and diffusion models convert Gaussian noise into images with many hundreds of denoising steps. In this work, we explore non-autoregressive text-to-image models that efficiently generate hundreds of image tokens in parallel. We develop many model variations with different learning and inference strategies, initialized text encoders, etc. Compared with autoregressive baselines that needs to run one thousand times, our model only runs 16 times to generate images of competitive quality with an order of magnitude lower inference latency. Our non-autoregressive model with 346M parameters generates an image of 256$\times$256 with about one second on one V100 GPU.
Abstract:Traditional multitask learning methods basically can only exploit common knowledge in task- or language-wise, which lose either cross-language or cross-task knowledge. This paper proposes a general multilingual multitask model, named SkillNet-X, which enables a single model to tackle many different tasks from different languages. To this end, we define several language-specific skills and task-specific skills, each of which corresponds to a skill module. SkillNet-X sparsely activates parts of the skill modules which are relevant either to the target task or the target language. Acting as knowledge transit hubs, skill modules are capable of absorbing task-related knowledge and language-related knowledge consecutively. Based on Transformer, we modify the multi-head attention layer and the feed forward network layer to accommodate skill modules. We evaluate SkillNet-X on eleven natural language understanding datasets in four languages. Results show that SkillNet-X performs better than task-specific baselines and two multitask learning baselines (i.e., dense joint model and Mixture-of-Experts model). Furthermore, skill pre-training further improves the performance of SkillNet-X on almost all datasets. To investigate the generalization of our model, we conduct experiments on two new tasks and find that SkillNet-X significantly outperforms baselines.
Abstract:Diffusion models developed on top of powerful text-to-image generation models like Stable Diffusion achieve remarkable success in visual story generation. However, the best-performing approach considers historically generated results as flattened memory cells, ignoring the fact that not all preceding images contribute equally to the generation of the characters and scenes at the current stage. To address this, we present a simple method that improves the leading system with adaptive context modeling, which is not only incorporated in the encoder but also adopted as additional guidance in the sampling stage to boost the global consistency of the generated story. We evaluate our model on PororoSV and FlintstonesSV datasets and show that our approach achieves state-of-the-art FID scores on both story visualization and continuation scenarios. We conduct detailed model analysis and show that our model excels at generating semantically consistent images for stories.
Abstract:Although large-scale video-language pre-training models, which usually build a global alignment between the video and the text, have achieved remarkable progress on various downstream tasks, the idea of adopting fine-grained information during the pre-training stage is not well explored. In this work, we propose STOA-VLP, a pre-training framework that jointly models object and action information across spatial and temporal dimensions. More specifically, the model regards object trajectories across frames and multiple action features from the video as fine-grained features. Besides, We design two auxiliary tasks to better incorporate both kinds of information into the pre-training process of the video-language model. The first is the dynamic object-text alignment task, which builds a better connection between object trajectories and the relevant noun tokens. The second is the spatial-temporal action set prediction, which guides the model to generate consistent action features by predicting actions found in the text. Extensive experiments on three downstream tasks (video captioning, text-video retrieval, and video question answering) demonstrate the effectiveness of our proposed STOA-VLP (e.g. 3.7 Rouge-L improvements on MSR-VTT video captioning benchmark, 2.9% accuracy improvements on MSVD video question answering benchmark, compared to previous approaches).