Abstract:Echocardiography segmentation for cardiac analysis is time-consuming and resource-intensive due to the variability in image quality and the necessity to process scans from various standard views. While current automated segmentation methods in echocardiography show promising performance, they are trained on specific scan views to analyze corresponding data. However, this solution has a limitation as the number of required models increases with the number of standard views. To address this, in this paper, we present a prompt-driven universal method for view-agnostic echocardiography analysis. Considering the domain shift between standard views, we first introduce a method called prompt matching, aimed at learning prompts specific to different views by matching prompts and querying input embeddings using a pre-trained vision model. Then, we utilized a pre-trained medical language model to align textual information with pixel data for accurate segmentation. Extensive experiments on three standard views showed that our approach significantly outperforms the state-of-the-art universal methods and achieves comparable or even better performances over the segmentation model trained and tested on same views.
Abstract:3D dense captioning requires a model to translate its understanding of an input 3D scene into several captions associated with different object regions. Existing methods adopt a sophisticated "detect-then-describe" pipeline, which builds explicit relation modules upon a 3D detector with numerous hand-crafted components. While these methods have achieved initial success, the cascade pipeline tends to accumulate errors because of duplicated and inaccurate box estimations and messy 3D scenes. In this paper, we first propose Vote2Cap-DETR, a simple-yet-effective transformer framework that decouples the decoding process of caption generation and object localization through parallel decoding. Moreover, we argue that object localization and description generation require different levels of scene understanding, which could be challenging for a shared set of queries to capture. To this end, we propose an advanced version, Vote2Cap-DETR++, which decouples the queries into localization and caption queries to capture task-specific features. Additionally, we introduce the iterative spatial refinement strategy to vote queries for faster convergence and better localization performance. We also insert additional spatial information to the caption head for more accurate descriptions. Without bells and whistles, extensive experiments on two commonly used datasets, ScanRefer and Nr3D, demonstrate Vote2Cap-DETR and Vote2Cap-DETR++ surpass conventional "detect-then-describe" methods by a large margin. Codes will be made available at https://github.com/ch3cook-fdu/Vote2Cap-DETR.
Abstract:Open-world instance segmentation has recently gained significant popularitydue to its importance in many real-world applications, such as autonomous driving, robot perception, and remote sensing. However, previous methods have either produced unsatisfactory results or relied on complex systems and paradigms. We wonder if there is a simple way to obtain state-of-the-art results. Fortunately, we have identified two observations that help us achieve the best of both worlds: 1) query-based methods demonstrate superiority over dense proposal-based methods in open-world instance segmentation, and 2) learning localization cues is sufficient for open world instance segmentation. Based on these observations, we propose a simple query-based method named OpenInst for open world instance segmentation. OpenInst leverages advanced query-based methods like QueryInst and focuses on learning localization cues. Notably, OpenInst is an extremely simple and straightforward framework without any auxiliary modules or post-processing, yet achieves state-of-the-art results on multiple benchmarks. Specifically, in the COCO$\to$UVO scenario, OpenInst achieves a mask AR of 53.3, outperforming the previous best methods by 2.0 AR with a simpler structure. We hope that OpenInst can serve as a solid baselines for future research in this area.
Abstract:Unsupervised domain adaptation (UDA) is an approach to minimizing domain gap. Generative methods are common approaches to minimizing the domain gap of aerial images which improves the performance of the downstream tasks, e.g., cross-domain semantic segmentation. For aerial images, the digital surface model (DSM) is usually available in both the source domain and the target domain. Depth information in DSM brings external information to generative models. However, little research utilizes it. In this paper, depth-assisted ResiDualGAN (DRDG) is proposed where depth supervised loss (DSL), and depth cycle consistency loss (DCCL) are used to bring depth information into the generative model. Experimental results show that DRDG reaches state-of-the-art accuracy between generative methods in cross-domain semantic segmentation tasks.
Abstract:Automated segmentation of tuberculosis (TB)-consistent lesions in chest X-rays (CXRs) using deep learning (DL) methods can help reduce radiologist effort, supplement clinical decision-making, and potentially result in improved patient treatment. The majority of works in the literature discuss training automatic segmentation models using coarse bounding box annotations. However, the granularity of the bounding box annotation could result in the inclusion of a considerable fraction of false positives and negatives at the pixel level that may adversely impact overall semantic segmentation performance. This study (i) evaluates the benefits of using fine-grained annotations of TB-consistent lesions and (ii) trains and constructs ensembles of the variants of U-Net models for semantically segmenting TB-consistent lesions in both original and bone-suppressed frontal CXRs. We evaluated segmentation performance using several ensemble methods such as bitwise AND, bitwise-OR, bitwise-MAX, and stacking. We observed that the stacking ensemble demonstrated superior segmentation performance (Dice score: 0.5743, 95% confidence interval: (0.4055,0.7431)) compared to the individual constituent models and other ensemble methods. To the best of our knowledge, this is the first study to apply ensemble learning to improve fine-grained TB-consistent lesion segmentation performance.
Abstract:Stereo matching is a fundamental building block for many vision and robotics applications. An informative and concise cost volume representation is vital for stereo matching of high accuracy and efficiency. In this paper, we present a novel cost volume construction method which generates attention weights from correlation clues to suppress redundant information and enhance matching-related information in the concatenation volume. To generate reliable attention weights, we propose multi-level adaptive patch matching to improve the distinctiveness of the matching cost at different disparities even for textureless regions. The proposed cost volume is named attention concatenation volume (ACV) which can be seamlessly embedded into most stereo matching networks, the resulting networks can use a more lightweight aggregation network and meanwhile achieve higher accuracy, e.g. using only 1/25 parameters of the aggregation network can achieve higher accuracy for GwcNet. Furthermore, we design a highly accurate network (ACVNet) based on our ACV, which achieves state-of-the-art performance on several benchmarks.
Abstract:The performance of a semantic segmentation model for remote sensing (RS) images pretrained on an annotated dataset would greatly decrease when testing on another unannotated dataset because of the domain gap. Adversarial generative methods, e.g., DualGAN, are utilized for unpaired image-to-image translation to minimize the pixel-level domain gap, which is one of the common approaches for unsupervised domain adaptation (UDA). However, existing image translation methods are facing two problems when performing RS images translation: 1) ignoring the scale discrepancy between two RS datasets which greatly affect the accuracy performance of scale-invariant objects, 2) ignoring the characteristic of real-to-real translation of RS images which brings an unstable factor for the training of the models. In this paper, ResiDualGAN is proposed for RS images translation, where a resizer module is used for addressing the scale discrepancy of RS datasets, and a residual connection is used for strengthening the stability of real-to-real images translation and improving the performance in cross-domain semantic segmentation tasks. Combining with an output space adaptation method, the proposed method greatly improves the accuracy performance on common benchmarks, which demonstrates the superiority and reliability of ResiDuanGAN. At the end of the paper, a thorough discussion is also conducted to give a reasonable explanation for the improvement of ResiDualGAN.
Abstract:For NP-hard combinatorial optimization problems, it is usually difficult to find high-quality solutions in polynomial time. The design of either an exact algorithm or an approximate algorithm for these problems often requires significantly specialized knowledge. Recently, deep learning methods provide new directions to solve such problems. In this paper, an end-to-end deep reinforcement learning framework is proposed to solve this type of combinatorial optimization problems. This framework can be applied to different problems with only slight changes of input (for example, for a traveling salesman problem (TSP), the input is the two-dimensional coordinates of nodes; while for a capacity-constrained vehicle routing problem (CVRP), the input is simply changed to three-dimensional vectors including the two-dimensional coordinates and the customer demands of nodes), masks and decoder context vectors. The proposed framework is aiming to improve the models in literacy in terms of the neural network model and the training algorithm. The solution quality of TSP and the CVRP up to 100 nodes are significantly improved via our framework. Specifically, the average optimality gap is reduced from 4.53\% (reported best \cite{R22}) to 3.67\% for TSP with 100 nodes and from 7.34\% (reported best \cite{R22}) to 6.68\% for CVRP with 100 nodes when using the greedy decoding strategy. Furthermore, our framework uses about 1/3$\sim$3/4 training samples compared with other existing learning methods while achieving better results. The results performed on randomly generated instances and the benchmark instances from TSPLIB and CVRPLIB confirm that our framework has a linear running time on the problem size (number of nodes) during the testing phase, and has a good generalization performance from random instance training to real-world instance testing.
Abstract:The slate re-ranking problem considers the mutual influences between items to improve user satisfaction in e-commerce, compared with the point-wise ranking. Previous works either directly rank items by an end to end model, or rank items by a score function that trades-off the point-wise score and the diversity between items. However, there are two main existing challenges that are not well studied: (1) the evaluation of the slate is hard due to the complex mutual influences between items of one slate; (2) even given the optimal evaluation, searching the optimal slate is challenging as the action space is exponentially large. In this paper, we present a novel Generator and Critic slate re-ranking approach, where the Critic evaluates the slate and the Generator ranks the items by the reinforcement learning approach. We propose a Full Slate Critic (FSC) model that considers the real impressed items and avoids the impressed bias of existing models. For the Generator, to tackle the problem of large action space, we propose a new exploration reinforcement learning algorithm, called PPO-Exploration. Experimental results show that the FSC model significantly outperforms the state of the art slate evaluation methods, and the PPO-Exploration algorithm outperforms the existing reinforcement learning methods substantially. The Generator and Critic approach improves both the slate efficiency(4% gmv and 5% number of orders) and diversity in live experiments on one of the largest e-commerce websites in the world.
Abstract:Interactive sentiment analysis is an emerging, yet challenging, subtask of the sentiment analysis problem. It aims to discover the affective state and sentimental change of each person in a conversation. Existing sentiment analysis approaches are insufficient in modelling the interactions among people. However, the development of new approaches are critically limited by the lack of labelled interactive sentiment datasets. In this paper, we present a new conversational emotion database that we have created and made publically available, namely ScenarioSA. We manually label 2,214 multi-turn English conversations collected from natural contexts. In comparison with existing sentiment datasets, ScenarioSA (1) covers a wide range of scenarios; (2) describes the interactions between two speakers; and (3) reflects the sentimental evolution of each speaker over the course of a conversation. Finally, we evaluate various state-of-the-art algorithms on ScenarioSA, demonstrating the need of novel interactive sentiment analysis models and the potential of ScenarioSA to facilitate the development of such models.