Chromatic dispersion compensation (CDC), implemented in either the time-domain or frequency-domain, is crucial for enhancing power efficiency in the digital signal processing of modern optical fiber communication systems. Developing low-complexity CDC schemes is essential for hardware implemention, particularly for high-speed and long-haul optical fiber communication systems. In this work, we propose a novel two-stage fuzzy clustered time-domain chromatic dispersion compensation scheme. Unlike hard decisions of CDC filter coefficients after determining the cluster centroids, our approach applies a soft fuzzy decision, allowing the coefficients to belong to multiple clusters. Experiments on a single-channel, single-polarization 20Gbaud 16-QAM 1800 km standard single-mode fiber communication system demonstrate that our approach has a complexity reduction of 53.8% and 40% compared with clustered TD-CDC and FD-CDC at a target Q-factor of 20% HD-FEC, respectively. Furthermore, the proposed method achieves the same optimal Q-factor as FD-CDC with a 27% complexity reduction.