Tony
Abstract:Generating sound effects for product-level videos, where only a small amount of labeled data is available for diverse scenes, requires the production of high-quality sounds in few-shot settings. To tackle the challenge of limited labeled data in real-world scenes, we introduce YingSound, a foundation model designed for video-guided sound generation that supports high-quality audio generation in few-shot settings. Specifically, YingSound consists of two major modules. The first module uses a conditional flow matching transformer to achieve effective semantic alignment in sound generation across audio and visual modalities. This module aims to build a learnable audio-visual aggregator (AVA) that integrates high-resolution visual features with corresponding audio features at multiple stages. The second module is developed with a proposed multi-modal visual-audio chain-of-thought (CoT) approach to generate finer sound effects in few-shot settings. Finally, an industry-standard video-to-audio (V2A) dataset that encompasses various real-world scenarios is presented. We show that YingSound effectively generates high-quality synchronized sounds across diverse conditional inputs through automated evaluations and human studies. Project Page: \url{https://giantailab.github.io/yingsound/}
Abstract:Large Language Models (LLMs) have transformed numerous fields by enabling advanced natural language interactions but remain susceptible to critical vulnerabilities, particularly jailbreak attacks. Current jailbreak techniques, while effective, often depend on input modifications, making them detectable and limiting their stealth and scalability. This paper presents Targeted Model Editing (TME), a novel white-box approach that bypasses safety filters by minimally altering internal model structures while preserving the model's intended functionalities. TME identifies and removes safety-critical transformations (SCTs) embedded in model matrices, enabling malicious queries to bypass restrictions without input modifications. By analyzing distinct activation patterns between safe and unsafe queries, TME isolates and approximates SCTs through an optimization process. Implemented in the D-LLM framework, our method achieves an average Attack Success Rate (ASR) of 84.86% on four mainstream open-source LLMs, maintaining high performance. Unlike existing methods, D-LLM eliminates the need for specific triggers or harmful response collections, offering a stealthier and more effective jailbreak strategy. This work reveals a covert and robust threat vector in LLM security and emphasizes the need for stronger safeguards in model safety alignment.
Abstract:Contemporary Text-to-Image (T2I) models frequently depend on qualitative human evaluations to assess the consistency between synthesized images and the text prompts. There is a demand for quantitative and automatic evaluation tools, given that human evaluation lacks reproducibility. We believe that an effective T2I evaluation metric should accomplish the following: detect instances where the generated images do not align with the textual prompts, a discrepancy we define as the `hallucination problem' in T2I tasks; record the types and frequency of hallucination issues, aiding users in understanding the causes of errors; and provide a comprehensive and intuitive scoring that close to human standard. To achieve these objectives, we propose a method based on large language models (LLMs) for conducting question-answering with an extracted scene-graph and created a dataset with human-rated scores for generated images. From the methodology perspective, we combine knowledge-enhanced question-answering tasks with image evaluation tasks, making the evaluation metrics more controllable and easier to interpret. For the contribution on the dataset side, we generated 12,000 synthesized images based on 1,000 composited prompts using three advanced T2I models. Subsequently, we conduct human scoring on all synthesized images and prompt pairs to validate the accuracy and effectiveness of our method as an evaluation metric. All generated images and the human-labeled scores will be made publicly available in the future to facilitate ongoing research on this crucial issue. Extensive experiments show that our method aligns more closely with human scoring patterns than other evaluation metrics.
Abstract:To detect prohibited items in challenging categories, human inspectors typically rely on images from two distinct views (vertical and side). Can AI detect prohibited items from dual-view X-ray images in the same way humans do? Existing X-ray datasets often suffer from limitations, such as single-view imaging or insufficient sample diversity. To address these gaps, we introduce the Large-scale Dual-view X-ray (LDXray), which consists of 353,646 instances across 12 categories, providing a diverse and comprehensive resource for training and evaluating models. To emulate human intelligence in dual-view detection, we propose the Auxiliary-view Enhanced Network (AENet), a novel detection framework that leverages both the main and auxiliary views of the same object. The main-view pipeline focuses on detecting common categories, while the auxiliary-view pipeline handles more challenging categories using ``expert models" learned from the main view. Extensive experiments on the LDXray dataset demonstrate that the dual-view mechanism significantly enhances detection performance, e.g., achieving improvements of up to 24.7% for the challenging category of umbrellas. Furthermore, our results show that AENet exhibits strong generalization across seven different detection models for X-ray Inspection
Abstract:The detection of prohibited items in X-ray security inspections is vital for ensuring public safety. However, the long-tail distribution of item categories, where certain prohibited items are far less common, poses a big challenge for detection models, as rare categories often lack sufficient training data. Existing methods struggle to classify these rare items accurately due to this imbalance. In this paper, we propose a Dual-level Boost Network (DBNet) specifically designed to overcome these challenges in X-ray security screening. Our approach introduces two key innovations: (1) a specific data augmentation strategy employing Poisson blending, inspired by the characteristics of X-ray images, to generate realistic synthetic instances of rare items which can effectively mitigate data imbalance; and (2) a context-aware feature enhancement module that captures the spatial and semantic interactions between objects and their surroundings, enhancing classification accuracy for underrepresented categories. Extensive experimental results demonstrate that DBNet improves detection performance for tail categories, outperforming sota methods in X-ray security inspection scenarios by a large margin 17.2%, thereby ensuring enhanced public safety.
Abstract:In contrast to conventional RIS, the scattering matrix of a non-reciprocal RIS (NR-RIS) is non-symmetric, leading to differences in the uplink and the downlink components of NR-RIS cascaded channels. In this paper, a physically-consistent device model is proposed in which an NR-RIS is composed of multiple groups of two-port elements inter-connected by non-reciprocal devices. The resulting non-reciprocal scattering matrix is derived for various cases including two-element groups connected with isolators or gyrators, and general three-element groups connected via circulators. Signal models are given for NR-RIS operating in either reflecting-only or simultaneously transmitting and reflecting modes. The problem of NR-RIS design for non-reciprocal beamsteering is formulated for three-element circulator implementations, and numerical results confirm that non-reciprocal beamsteering can be achieved with minimal sidelobe power. We also show that our physically consistent NR-RIS architecture is effective in implementing channel reciprocity attacks, achieving similar performance to that with idealized NR-RIS models.
Abstract:Computed Tomography (CT) is one of the most popular modalities for medical imaging. By far, CT images have contributed to the largest publicly available datasets for volumetric medical segmentation tasks, covering full-body anatomical structures. Large amounts of full-body CT images provide the opportunity to pre-train powerful models, e.g., STU-Net pre-trained in a supervised fashion, to segment numerous anatomical structures. However, it remains unclear in which conditions these pre-trained models can be transferred to various downstream medical segmentation tasks, particularly segmenting the other modalities and diverse targets. To address this problem, a large-scale benchmark for comprehensive evaluation is crucial for finding these conditions. Thus, we collected 87 public datasets varying in modality, target, and sample size to evaluate the transfer ability of full-body CT pre-trained models. We then employed a representative model, STU-Net with multiple model scales, to conduct transfer learning across modalities and targets. Our experimental results show that (1) there may be a bottleneck effect concerning the dataset size in fine-tuning, with more improvement on both small- and large-scale datasets than medium-size ones. (2) Models pre-trained on full-body CT demonstrate effective modality transfer, adapting well to other modalities such as MRI. (3) Pre-training on the full-body CT not only supports strong performance in structure detection but also shows efficacy in lesion detection, showcasing adaptability across target tasks. We hope that this large-scale open evaluation of transfer learning can direct future research in volumetric medical image segmentation.
Abstract:Interactive Medical Image Segmentation (IMIS) has long been constrained by the limited availability of large-scale, diverse, and densely annotated datasets, which hinders model generalization and consistent evaluation across different models. In this paper, we introduce the IMed-361M benchmark dataset, a significant advancement in general IMIS research. First, we collect and standardize over 6.4 million medical images and their corresponding ground truth masks from multiple data sources. Then, leveraging the strong object recognition capabilities of a vision foundational model, we automatically generated dense interactive masks for each image and ensured their quality through rigorous quality control and granularity management. Unlike previous datasets, which are limited by specific modalities or sparse annotations, IMed-361M spans 14 modalities and 204 segmentation targets, totaling 361 million masks-an average of 56 masks per image. Finally, we developed an IMIS baseline network on this dataset that supports high-quality mask generation through interactive inputs, including clicks, bounding boxes, text prompts, and their combinations. We evaluate its performance on medical image segmentation tasks from multiple perspectives, demonstrating superior accuracy and scalability compared to existing interactive segmentation models. To facilitate research on foundational models in medical computer vision, we release the IMed-361M and model at https://github.com/uni-medical/IMIS-Bench.
Abstract:Impersonation tactics, such as app squatting and app cloning, have posed longstanding challenges in mobile app stores, where malicious actors exploit the names and reputations of popular apps to deceive users. With the rapid growth of Large Language Model (LLM) stores like GPT Store and FlowGPT, these issues have similarly surfaced, threatening the integrity of the LLM app ecosystem. In this study, we present the first large-scale analysis of LLM app squatting and cloning using our custom-built tool, LLMappCrazy. LLMappCrazy covers 14 squatting generation techniques and integrates Levenshtein distance and BERT-based semantic analysis to detect cloning by analyzing app functional similarities. Using this tool, we generated variations of the top 1000 app names and found over 5,000 squatting apps in the dataset. Additionally, we observed 3,509 squatting apps and 9,575 cloning cases across six major platforms. After sampling, we find that 18.7% of the squatting apps and 4.9% of the cloning apps exhibited malicious behavior, including phishing, malware distribution, fake content dissemination, and aggressive ad injection.
Abstract:GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.