Tony
Abstract:Previous studies have found that PLM-based retrieval models exhibit a preference for LLM-generated content, assigning higher relevance scores to these documents even when their semantic quality is comparable to human-written ones. This phenomenon, known as source bias, threatens the sustainable development of the information access ecosystem. However, the underlying causes of source bias remain unexplored. In this paper, we explain the process of information retrieval with a causal graph and discover that PLM-based retrievers learn perplexity features for relevance estimation, causing source bias by ranking the documents with low perplexity higher. Theoretical analysis further reveals that the phenomenon stems from the positive correlation between the gradients of the loss functions in language modeling task and retrieval task. Based on the analysis, a causal-inspired inference-time debiasing method is proposed, called Causal Diagnosis and Correction (CDC). CDC first diagnoses the bias effect of the perplexity and then separates the bias effect from the overall estimated relevance score. Experimental results across three domains demonstrate the superior debiasing effectiveness of CDC, emphasizing the validity of our proposed explanatory framework. Source codes are available at https://github.com/WhyDwelledOnAi/Perplexity-Trap.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems. While approaches like self-correction and response selection have emerged as popular solutions, recent studies have shown these methods perform poorly when relying on the LLM itself to provide feedback or selection criteria. We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks. In this paper, we propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities. GSA first samples multiple diverse responses from the LLM, then aggregates them to obtain an improved solution. Unlike previous approaches, our method does not require the LLM to correct errors or compare response quality; instead, it leverages the model's generative abilities to synthesize a new response based on the context of multiple samples. While GSA shares similarities with the self-consistency (SC) approach for response aggregation, SC requires specific verifiable tokens to enable majority voting. In contrast, our approach is more general and can be applied to open-ended tasks. Empirical evaluation demonstrates that GSA effectively improves response quality across various tasks, including mathematical reasoning, knowledge-based problems, and open-ended generation tasks such as code synthesis and conversational responses.
Abstract:Large Language Model (LLM) applications, including LLM app stores and autonomous agents, are shaping the future of AI ecosystems. However, platform silos, fragmented hardware integration, and the absence of standardized interfaces limit scalability, interoperability, and resource efficiency. While LLM app stores democratize AI, their closed ecosystems restrict modular AI reuse and cross-platform portability. Meanwhile, agent-based frameworks offer flexibility but often lack seamless integration across diverse environments. This paper envisions the future of LLM applications and proposes a three-layer decoupled architecture grounded in software engineering principles such as layered system design, service-oriented architectures, and hardware-software co-design. This architecture separates application logic, communication protocols, and hardware execution, enhancing modularity, efficiency, and cross-platform compatibility. Beyond architecture, we highlight key security and privacy challenges for safe, scalable AI deployment and outline research directions in software and security engineering. This vision aims to foster open, secure, and interoperable LLM ecosystems, guiding future advancements in AI applications.
Abstract:The UAV technology is gradually maturing and can provide extremely powerful support for smart agriculture and precise monitoring. Currently, there is no dataset related to green walnuts in the field of agricultural computer vision. Thus, in order to promote the algorithm design in the field of agricultural computer vision, we used UAV to collect remote-sensing data from 8 walnut sample plots. Considering that green walnuts are subject to various lighting conditions and occlusion, we constructed a large-scale dataset with a higher-granularity of target features - WalnutData. This dataset contains a total of 30,240 images and 706,208 instances, and there are 4 target categories: being illuminated by frontal light and unoccluded (A1), being backlit and unoccluded (A2), being illuminated by frontal light and occluded (B1), and being backlit and occluded (B2). Subsequently, we evaluated many mainstream algorithms on WalnutData and used these evaluation results as the baseline standard. The dataset and all evaluation results can be obtained at https://github.com/1wuming/WalnutData.
Abstract:Webshell is a type of backdoor, and web applications are widely exposed to webshell injection attacks. Therefore, it is important to study webshell detection techniques. In this study, we propose a webshell detection method. We first convert PHP source code to opcodes and then extract Opcode Double-Tuples (ODTs). Next, we combine CodeBert and FastText models for feature representation and classification. To address the challenge that deep learning methods have difficulty detecting long webshell files, we introduce a sliding window attention mechanism. This approach effectively captures malicious behavior within long files. Experimental results show that our method reaches high accuracy in webshell detection, solving the problem of traditional methods that struggle to address new webshell variants and anti-detection techniques.
Abstract:Effective conversational systems are expected to dynamically generate contextual follow-up questions to elicit new information while maintaining the conversation flow. While humans excel at asking diverse and informative questions by intuitively assessing both obtained and missing information, existing models often fall short of human performance on this task. To mitigate this, we propose a method that generates diverse and informative questions based on targeting unanswered information using a hypothetical LLM-generated "comprehensive answer". Our method is applied to augment an existing follow-up questions dataset. The experimental results demonstrate that language models fine-tuned on the augmented datasets produce follow-up questions of significantly higher quality and diversity. This promising approach could be effectively adopted to future work to augment information-seeking dialogues for reducing ambiguities and improving the accuracy of LLM answers.
Abstract:Handling long-context sequences efficiently remains a significant challenge in large language models (LLMs). Existing methods for token selection in sequence extrapolation either employ a permanent eviction strategy or select tokens by chunk, which may lead to the loss of critical information. We propose Efficient Selective Attention (ESA), a novel approach that extends context length by efficiently selecting the most critical tokens at the token level to compute attention. ESA reduces the computational complexity of token selection by compressing query and key vectors into lower-dimensional representations. We evaluate ESA on long sequence benchmarks with maximum lengths up to 256k using open-source LLMs with context lengths of 8k and 32k. ESA outperforms other selective attention methods, especially in tasks requiring the retrieval of multiple pieces of information, achieving comparable performance to full-attention extrapolation methods across various tasks, with superior results in certain tasks.
Abstract:Large language models (LLMs) face the challenge of hallucinations -- outputs that seem coherent but are actually incorrect. A particularly damaging type is fact-conflicting hallucination (FCH), where generated content contradicts established facts. Addressing FCH presents three main challenges: 1) Automatically constructing and maintaining large-scale benchmark datasets is difficult and resource-intensive; 2) Generating complex and efficient test cases that the LLM has not been trained on -- especially those involving intricate temporal features -- is challenging, yet crucial for eliciting hallucinations; and 3) Validating the reasoning behind LLM outputs is inherently difficult, particularly with complex logical relationships, as it requires transparency in the model's decision-making process. This paper presents Drowzee, an innovative end-to-end metamorphic testing framework that utilizes temporal logic to identify fact-conflicting hallucinations (FCH) in large language models (LLMs). Drowzee builds a comprehensive factual knowledge base by crawling sources like Wikipedia and uses automated temporal-logic reasoning to convert this knowledge into a large, extensible set of test cases with ground truth answers. LLMs are tested using these cases through template-based prompts, which require them to generate both answers and reasoning steps. To validate the reasoning, we propose two semantic-aware oracles that compare the semantic structure of LLM outputs to the ground truths. Across nine LLMs in nine different knowledge domains, experimental results show that Drowzee effectively identifies rates of non-temporal-related hallucinations ranging from 24.7% to 59.8%, and rates of temporal-related hallucinations ranging from 16.7% to 39.2%.
Abstract:Large language models (LLMs) have recently been introduced to graph learning, aiming to extend their zero-shot generalization success to tasks where labeled graph data is scarce. Among these applications, inference over text-attributed graphs (TAGs) presents unique challenges: existing methods struggle with LLMs' limited context length for processing large node neighborhoods and the misalignment between node embeddings and the LLM token space. To address these issues, we establish two key principles for ensuring generalization and derive the framework LLM-BP accordingly: (1) Unifying the attribute space with task-adaptive embeddings, where we leverage LLM-based encoders and task-aware prompting to enhance generalization of the text attribute embeddings; (2) Developing a generalizable graph information aggregation mechanism, for which we adopt belief propagation with LLM-estimated parameters that adapt across graphs. Evaluations on 11 real-world TAG benchmarks demonstrate that LLM-BP significantly outperforms existing approaches, achieving 8.10% improvement with task-conditional embeddings and an additional 1.71% gain from adaptive aggregation.
Abstract:Training safe LLMs is one of the most critical research challenge. However, the commonly used method, Refusal Training (RT), struggles to generalize against various OOD jailbreaking attacks. Many safety training methods have been proposed to address this issue. While they offer valuable insights, we aim to complement this line of research by investigating whether OOD attacks truly exceed the capability of RT model. Conducting evaluation with BoN, we observe significant improvements on generalization as N increases. This underscores that the model possesses sufficient safety-related latent knowledge, but RT fails to consistently elicit this knowledge when addressing OOD attacks. Further analysis based on domain adaptation reveals that training with direct refusal causes model to rely on superficial shortcuts, resulting in learning of non-robust representation mappings. Based on our findings, we propose training model to perform safety reasoning for each query. Reasoning supervision encourages model to perform more computations, explicitly eliciting and using latent knowledge through reasoning. To achieve this, we synthesize reasoning supervision based on pre-guidelines, training the model to reason in alignment with them, thereby effectively eliciting and utilizing latent knowledge from diverse perspectives. Extensive experiments show that our method significantly improves generalization performance against OOD attacks.