Abstract:Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. Exploiting the heterogeneous capabilities of edge LLMs is crucial for diverse emerging applications, as it enables greater cost-effectiveness and reduced latency. In this work, we introduce \textit{Mixture-of-Edge-Experts (MoE$^2$)}, a novel collaborative inference framework for edge LLMs. We formulate the joint gating and expert selection problem to optimize inference performance under energy and latency constraints. Unlike conventional MoE problems, LLM expert selection is significantly more challenging due to the combinatorial nature and the heterogeneity of edge LLMs across various attributes. To this end, we propose a two-level expert selection mechanism through which we uncover an optimality-preserving property of gating parameters across expert selections. This property enables the decomposition of the training and selection processes, significantly reducing complexity. Furthermore, we leverage the objective's monotonicity and design a discrete monotonic optimization algorithm for optimal expert selection. We implement edge servers with NVIDIA Jetson AGX Orins and NVIDIA RTX 4090 GPUs, and perform extensive experiments. Our results validate that performance improvements of various LLM models and show that our MoE$^2$ method can achieve optimal trade-offs among different delay and energy budgets, and outperforms baselines under various system resource constraints.
Abstract:3D point cloud registration is a fundamental problem in computer vision, computer graphics, robotics, remote sensing, and etc. Over the last thirty years, we have witnessed the amazing advancement in this area with numerous kinds of solutions. Although a handful of relevant surveys have been conducted, their coverage is still limited. In this work, we present a comprehensive survey on 3D point cloud registration, covering a set of sub-areas such as pairwise coarse registration, pairwise fine registration, multi-view registration, cross-scale registration, and multi-instance registration. The datasets, evaluation metrics, method taxonomy, discussions of the merits and demerits, insightful thoughts of future directions are comprehensively presented in this survey. The regularly updated project page of the survey is available at https://github.com/Amyyyy11/3D-Registration-in-30-Years-A-Survey.
Abstract:Pre-training backbone networks on a general annotated dataset (e.g., ImageNet) that comprises numerous manually collected images with category annotations has proven to be indispensable for enhancing the generalization capacity of downstream visual tasks. However, those manually collected images often exhibit bias, which is non-transferable across either categories or domains, thus causing the model's generalization capacity degeneration. To mitigate this problem, we present an unbiased general annotated dataset generation framework (ubGen). Instead of expensive manual collection, we aim at directly generating unbiased images with category annotations. To achieve this goal, we propose to leverage the advantage of a multimodal foundation model (e.g., CLIP), in terms of aligning images in an unbiased semantic space defined by language. Specifically, we develop a bi-level semantic alignment loss, which not only forces all generated images to be consistent with the semantic distribution of all categories belonging to the target dataset in an adversarial learning manner, but also requires each generated image to match the semantic description of its category name. In addition, we further cast an existing image quality scoring model into a quality assurance loss to preserve the quality of the generated image. By leveraging these two loss functions, we can obtain an unbiased image generation model by simply fine-tuning a pre-trained diffusion model using only all category names in the target dataset as input. Experimental results confirm that, compared with the manually labeled dataset or other synthetic datasets, the utilization of our generated unbiased datasets leads to stable generalization capacity enhancement of different backbone networks across various tasks, especially in tasks where the manually labeled samples are scarce.
Abstract:Zero-shot action recognition (ZSAR) requires collaborative multi-modal spatiotemporal understanding. However, finetuning CLIP directly for ZSAR yields suboptimal performance, given its inherent constraints in capturing essential temporal dynamics from both vision and text perspectives, especially when encountering novel actions with fine-grained spatiotemporal discrepancies. In this work, we propose Spatiotemporal Dynamic Duo (STDD), a novel CLIP-based framework to comprehend multi-modal spatiotemporal dynamics synergistically. For the vision side, we propose an efficient Space-time Cross Attention, which captures spatiotemporal dynamics flexibly with simple yet effective operations applied before and after spatial attention, without adding additional parameters or increasing computational complexity. For the semantic side, we conduct spatiotemporal text augmentation by comprehensively constructing an Action Semantic Knowledge Graph (ASKG) to derive nuanced text prompts. The ASKG elaborates on static and dynamic concepts and their interrelations, based on the idea of decomposing actions into spatial appearances and temporal motions. During the training phase, the frame-level video representations are meticulously aligned with prompt-level nuanced text representations, which are concurrently regulated by the video representations from the frozen CLIP to enhance generalizability. Extensive experiments validate the effectiveness of our approach, which consistently surpasses state-of-the-art approaches on popular video benchmarks (i.e., Kinetics-600, UCF101, and HMDB51) under challenging ZSAR settings. Code is available at https://github.com/Mia-YatingYu/STDD.
Abstract:Although Large Vision-Language Models (LVLMs) have achieved impressive results, their high computational cost poses a significant barrier to wider application. To enhance inference efficiency, most existing approaches depend on parameter-dependent or token-dependent strategies to reduce computational demands. However, these methods typically require complex training processes and struggle to consistently select the most relevant tokens. In this paper, we systematically analyze the above challenges and provide a series of valuable insights for inference acceleration. Based on these findings, we propose a novel framework, the Pruning All-Rounder (PAR). Different from previous works, PAR develops a meta-router to adaptively organize pruning flows across both tokens and layers. With a self-supervised learning manner, our method achieves a superior balance between performance and efficiency. Notably, PAR is highly flexible, offering multiple pruning versions to address a range of pruning scenarios. The code for this work will be made publicly available.
Abstract:This paper addresses the challenge of spectral-spatial feature extraction for hyperspectral image classification by introducing a novel tensor-based framework. The proposed approach incorporates circular convolution into a tensor structure to effectively capture and integrate both spectral and spatial information. Building upon this framework, the traditional Principal Component Analysis (PCA) technique is extended to its tensor-based counterpart, referred to as Tensor Principal Component Analysis (TPCA). The proposed TPCA method leverages the inherent multi-dimensional structure of hyperspectral data, thereby enabling more effective feature representation. Experimental results on benchmark hyperspectral datasets demonstrate that classification models using TPCA features consistently outperform those using traditional PCA and other state-of-the-art techniques. These findings highlight the potential of the tensor-based framework in advancing hyperspectral image analysis.
Abstract:With the wide application of deep neural network models in various computer vision tasks, there has been a proliferation of adversarial example generation strategies aimed at deeply exploring model security. However, existing adversarial training defense models, which rely on single or limited types of attacks under a one-time learning process, struggle to adapt to the dynamic and evolving nature of attack methods. Therefore, to achieve defense performance improvements for models in long-term applications, we propose a novel Sustainable Self-Evolution Adversarial Training (SSEAT) framework. Specifically, we introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples across multiple stages. Additionally, to address the issue of model catastrophic forgetting caused by continual learning from ongoing novel attacks, we propose an adversarial data replay module to better select more diverse and key relearning data. Furthermore, we design a consistency regularization strategy to encourage current defense models to learn more from previously trained ones, guiding them to retain more past knowledge and maintain accuracy on clean samples. Extensive experiments have been conducted to verify the efficacy of the proposed SSEAT defense method, which demonstrates superior defense performance and classification accuracy compared to competitors.
Abstract:Utilizing large language models (LLMs) for tool planning has emerged as a promising avenue for developing general AI systems, where LLMs automatically schedule external tools (e.g. vision models) to tackle complex tasks based on task descriptions. To push this paradigm toward practical applications, it is crucial for LLMs to consider tool execution costs (e.g. execution time) for tool planning. Unfortunately, prior studies overlook the tool execution costs, leading to the generation of expensive plans of which the costs outweigh task performance. To fill this gap, we propose the Cost-Aware Tool Planning with LLMs (CATP-LLM) framework, which for the first time provides a coherent design to empower LLMs for cost-aware tool planning. Specifically, CATP-LLM incorporates a tool planning language to enhance the LLM to generate non-sequential plans of multiple branches for efficient concurrent tool execution and cost reduction. Moreover, it further designs a cost-aware offline reinforcement learning algorithm to fine-tune the LLM to optimize the performance-cost trade-off in tool planning. In lack of public cost-related datasets, we further present OpenCATP, the first platform for cost-aware planning evaluation. Experiments on OpenCATP show that CATP-LLM outperforms GPT-4 even when using Llama2-7B as its backbone, with the average improvement of 28.2%-30.2% higher plan performance and 24.7%-45.8% lower costs even on the challenging planning tasks. The codes of CATP-LLM and OpenCATP will be publicly available.
Abstract:Image super-resolution (SR) is a classical yet still active low-level vision problem that aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts, serving as a key technique for image enhancement. Current approaches to address SR tasks, such as transformer-based and diffusion-based methods, are either dedicated to extracting RGB image features or assuming similar degradation patterns, neglecting the inherent modal disparities between infrared and visible images. When directly applied to infrared image SR tasks, these methods inevitably distort the infrared spectral distribution, compromising the machine perception in downstream tasks. In this work, we emphasize the infrared spectral distribution fidelity and propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity. Our approach captures high-pass subbands from multi-scale and multi-directional infrared spectral decomposition to recover infrared-degraded information through a gate architecture. The proposed Spectral Fidelity Loss regularizes the spectral frequency distribution during reconstruction, which ensures the preservation of both high- and low-frequency components and maintains the fidelity of infrared-specific features. We propose a two-stage prompt-learning optimization to guide the model in learning infrared HR characteristics from LR degradation. Extensive experiments demonstrate that our approach outperforms existing image SR models in both visual and perceptual tasks while notably enhancing machine perception in downstream tasks. Our code is available at https://github.com/hey-it-s-me/CoRPLE.
Abstract:Meta-learning offers a promising avenue for few-shot learning (FSL), enabling models to glean a generalizable feature embedding through episodic training on synthetic FSL tasks in a source domain. Yet, in practical scenarios where the target task diverges from that in the source domain, meta-learning based method is susceptible to over-fitting. To overcome this, we introduce a novel framework, Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning, which is crafted to comprehensively exploit the cross-domain transferable image prior that each image can be decomposed into complementary low-frequency content details and high-frequency robust structural characteristics. Motivated by this insight, we propose to decompose each query image into its high-frequency and low-frequency components, and parallel incorporate them into the feature embedding network to enhance the final category prediction. More importantly, we introduce a feature reconstruction prior and a prediction consistency prior to separately encourage the consistency of the intermediate feature as well as the final category prediction between the original query image and its decomposed frequency components. This allows for collectively guiding the network's meta-learning process with the aim of learning generalizable image feature embeddings, while not introducing any extra computational cost in the inference phase. Our framework establishes new state-of-the-art results on multiple cross-domain few-shot learning benchmarks.