Abstract:Meta-learning offers a promising avenue for few-shot learning (FSL), enabling models to glean a generalizable feature embedding through episodic training on synthetic FSL tasks in a source domain. Yet, in practical scenarios where the target task diverges from that in the source domain, meta-learning based method is susceptible to over-fitting. To overcome this, we introduce a novel framework, Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning, which is crafted to comprehensively exploit the cross-domain transferable image prior that each image can be decomposed into complementary low-frequency content details and high-frequency robust structural characteristics. Motivated by this insight, we propose to decompose each query image into its high-frequency and low-frequency components, and parallel incorporate them into the feature embedding network to enhance the final category prediction. More importantly, we introduce a feature reconstruction prior and a prediction consistency prior to separately encourage the consistency of the intermediate feature as well as the final category prediction between the original query image and its decomposed frequency components. This allows for collectively guiding the network's meta-learning process with the aim of learning generalizable image feature embeddings, while not introducing any extra computational cost in the inference phase. Our framework establishes new state-of-the-art results on multiple cross-domain few-shot learning benchmarks.
Abstract:Existing unified methods typically treat multi-degradation image restoration as a multi-task learning problem. Despite performing effectively compared to single degradation restoration methods, they overlook the utilization of commonalities and specificities within multi-task restoration, thereby impeding the model's performance. Inspired by the success of deep generative models and fine-tuning techniques, we proposed a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning. Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks using low-rank adaptation. Additionally, we introduce a LoRA composing strategy based on the degradation similarity, which adaptively combines trained LoRAs and enables our model to be applicable for mixed degradation restoration. Extensive experiments on multiple and mixed degradations demonstrate that the proposed universal image restoration method not only achieves higher fidelity and perceptual image quality but also has better generalization ability than other unified image restoration models. Our code is available at https://github.com/Justones/UIR-LoRA.
Abstract:Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos. As a long-standing task in the field of computer vision, VAD has witnessed much good progress. In the era of deep learning, with the explosion of architectures of continuously growing capability and capacity, a great variety of deep learning based methods are constantly emerging for the VAD task, greatly improving the generalization ability of detection algorithms and broadening the application scenarios. Therefore, such a multitude of methods and a large body of literature make a comprehensive survey a pressing necessity. In this paper, we present an extensive and comprehensive research review, covering the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD, and we also delve into the latest VAD works based on pre-trained large models, remedying the limitations of past reviews in terms of only focusing on semi-supervised VAD and small model based methods. For the VAD task with different levels of supervision, we construct a well-organized taxonomy, profoundly discuss the characteristics of different types of methods, and show their performance comparisons. In addition, this review involves the public datasets, open-source codes, and evaluation metrics covering all the aforementioned VAD tasks. Finally, we provide several important research directions for the VAD community.
Abstract:In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
Abstract:Current weakly supervised video anomaly detection (WSVAD) task aims to achieve frame-level anomalous event detection with only coarse video-level annotations available. Existing works typically involve extracting global features from full-resolution video frames and training frame-level classifiers to detect anomalies in the temporal dimension. However, most anomalous events tend to occur in localized spatial regions rather than the entire video frames, which implies existing frame-level feature based works may be misled by the dominant background information and lack the interpretation of the detected anomalies. To address this dilemma, this paper introduces a novel method called STPrompt that learns spatio-temporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs). Our proposed method employs a two-stream network structure, with one stream focusing on the temporal dimension and the other primarily on the spatial dimension. By leveraging the learned knowledge from pre-trained VLMs and incorporating natural motion priors from raw videos, our model learns prompt embeddings that are aligned with spatio-temporal regions of videos (e.g., patches of individual frames) for identify specific local regions of anomalies, enabling accurate video anomaly detection while mitigating the influence of background information. Without relying on detailed spatio-temporal annotations or auxiliary object detection/tracking, our method achieves state-of-the-art performance on three public benchmarks for the WSVADL task.
Abstract:The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.
Abstract:Existing works in few-shot action recognition mostly fine-tune a pre-trained image model and design sophisticated temporal alignment modules at feature level. However, simply fully fine-tuning the pre-trained model could cause overfitting due to the scarcity of video samples. Additionally, we argue that the exploration of task-specific information is insufficient when relying solely on well extracted abstract features. In this work, we propose a simple but effective task-specific adaptation method (Task-Adapter) for few-shot action recognition. By introducing the proposed Task-Adapter into the last several layers of the backbone and keeping the parameters of the original pre-trained model frozen, we mitigate the overfitting problem caused by full fine-tuning and advance the task-specific mechanism into the process of feature extraction. In each Task-Adapter, we reuse the frozen self-attention layer to perform task-specific self-attention across different videos within the given task to capture both distinctive information among classes and shared information within classes, which facilitates task-specific adaptation and enhances subsequent metric measurement between the query feature and support prototypes. Experimental results consistently demonstrate the effectiveness of our proposed Task-Adapter on four standard few-shot action recognition datasets. Especially on temporal challenging SSv2 dataset, our method outperforms the state-of-the-art methods by a large margin.
Abstract:Human-object interactions (HOI) detection aims at capturing human-object pairs in images and corresponding actions. It is an important step toward high-level visual reasoning and scene understanding. However, due to the natural bias from the real world, existing methods mostly struggle with rare human-object pairs and lead to sub-optimal results. Recently, with the development of the generative model, a straightforward approach is to construct a more balanced dataset based on a group of supplementary samples. Unfortunately, there is a significant domain gap between the generated data and the original data, and simply merging the generated images into the original dataset cannot significantly boost the performance. To alleviate the above problem, we present a novel model-agnostic framework called \textbf{C}ontext-\textbf{E}nhanced \textbf{F}eature \textbf{A}lignment (CEFA) module, which can effectively align the generated data with the original data at the feature level and bridge the domain gap. Specifically, CEFA consists of a feature alignment module and a context enhancement module. On one hand, considering the crucial role of human-object pairs information in HOI tasks, the feature alignment module aligns the human-object pairs by aggregating instance information. On the other hand, to mitigate the issue of losing important context information caused by the traditional discriminator-style alignment method, we employ a context-enhanced image reconstruction module to improve the model's learning ability of contextual cues. Extensive experiments have shown that our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories\footnote{https://github.com/LijunZhang01/CEFA}.
Abstract:As a fundamental and extensively studied task in computer vision, image segmentation aims to locate and identify different semantic concepts at the pixel level. Recently, inspired by In-Context Learning (ICL), several generalist segmentation frameworks have been proposed, providing a promising paradigm for segmenting specific objects. However, existing works mostly ignore the value of visual prompts or simply apply similarity sorting to select contextual examples. In this paper, we focus on rethinking and improving the example selection strategy. By comprehensive comparisons, we first demonstrate that ICL-based segmentation models are sensitive to different contexts. Furthermore, empirical evidence indicates that the diversity of contextual prompts plays a crucial role in guiding segmentation. Based on the above insights, we propose a new stepwise context search method. Different from previous works, we construct a small yet rich candidate pool and adaptively search the well-matched contexts. More importantly, this method effectively reduces the annotation cost by compacting the search space. Extensive experiments show that our method is an effective strategy for selecting examples and enhancing segmentation performance.
Abstract:Structured light-based method with a camera-projector pair (CPP) plays a vital role in indoor 3D reconstruction, especially for scenes with weak textures. Previous methods usually assume known intrinsics, which are pre-calibrated from known objects, or self-calibrated from multi-view observations. It is still challenging to reliably recover CPP intrinsics from only two views without any known objects. In this paper, we provide a simple yet reliable solution. We demonstrate that, for the first time, sufficient constraints on CPP intrinsics can be derived from an unknown cuboid corner (C2), e.g. a room's corner, which is a common structure in indoor scenes. In addition, with only known camera principal point, the complex multi-variable estimation of all CPP intrinsics can be simplified to a simple univariable optimization problem, leading to reliable calibration and thus direct 3D reconstruction with unknown CPP. Extensive results have demonstrated the superiority of the proposed method over both traditional and learning-based counterparts. Furthermore, the proposed method also demonstrates impressive potential to solve similar tasks without active lighting, such as sparse-view structure from motion.