Abstract:Magnetic resonance imaging (MRI) is a crucial tool for clinical diagnosis while facing the challenge of long scanning time. To reduce the acquisition time, fast MRI reconstruction aims to restore high-quality images from the undersampled k-space. Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images. However, these studies often overlook the unique properties of k-space and directly apply general networks designed for image processing to k-space recovery, leaving the precise learning of k-space largely underexplored. In this work, we propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance, which boosts the performance of MRI reconstruction. Specifically, (1) an implicit neural representation based encoder-decoder structure is customized to continuously query unsampled k-values. (2) an image guidance module is designed to mine the semantic information from the low-quality MRI images to further guide the k-space recovery. (3) a multi-stage training strategy is proposed to recover dense k-space progressively. Extensive experiments conducted on CC359, fastMRI, and IXI datasets demonstrate the effectiveness of our method and its superiority over other competitors.
Abstract:Current weakly supervised video anomaly detection (WSVAD) task aims to achieve frame-level anomalous event detection with only coarse video-level annotations available. Existing works typically involve extracting global features from full-resolution video frames and training frame-level classifiers to detect anomalies in the temporal dimension. However, most anomalous events tend to occur in localized spatial regions rather than the entire video frames, which implies existing frame-level feature based works may be misled by the dominant background information and lack the interpretation of the detected anomalies. To address this dilemma, this paper introduces a novel method called STPrompt that learns spatio-temporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs). Our proposed method employs a two-stream network structure, with one stream focusing on the temporal dimension and the other primarily on the spatial dimension. By leveraging the learned knowledge from pre-trained VLMs and incorporating natural motion priors from raw videos, our model learns prompt embeddings that are aligned with spatio-temporal regions of videos (e.g., patches of individual frames) for identify specific local regions of anomalies, enabling accurate video anomaly detection while mitigating the influence of background information. Without relying on detailed spatio-temporal annotations or auxiliary object detection/tracking, our method achieves state-of-the-art performance on three public benchmarks for the WSVADL task.
Abstract:Social event detection refers to extracting relevant message clusters from social media data streams to represent specific events in the real world. Social event detection is important in numerous areas, such as opinion analysis, social safety, and decision-making. Most current methods are supervised and require access to large amounts of data. These methods need prior knowledge of the events and carry a high risk of leaking sensitive information in the messages, making them less applicable in open-world settings. Therefore, conducting unsupervised detection while fully utilizing the rich information in the messages and protecting data privacy remains a significant challenge. To this end, we propose a novel social event detection framework, ADP-SEMEvent, an unsupervised social event detection method that prioritizes privacy. Specifically, ADP-SEMEvent is divided into two stages, i.e., the construction stage of the private message graph and the clustering stage of the private message graph. In the first stage, an adaptive differential privacy approach is used to construct a private message graph. In this process, our method can adaptively apply differential privacy based on the events occurring each day in an open environment to maximize the use of the privacy budget. In the second stage, to address the reduction in data utility caused by noise, a novel 2-dimensional structural entropy minimization algorithm based on optimal subgraphs is used to detect events in the message graph. The highlight of this process is unsupervised and does not compromise differential privacy. Extensive experiments on two public datasets demonstrate that ADP-SEMEvent can achieve detection performance comparable to state-of-the-art methods while maintaining reasonable privacy budget parameters.
Abstract:Most fake news detection methods learn latent feature representations based on neural networks, which makes them black boxes to classify a piece of news without giving any justification. Existing explainable systems generate veracity justifications from investigative journalism, which suffer from debunking delayed and low efficiency. Recent studies simply assume that the justification is equivalent to the majority opinions expressed in the wisdom of crowds. However, the opinions typically contain some inaccurate or biased information since the wisdom of crowds is uncensored. To detect fake news from a sea of diverse, crowded and even competing narratives, in this paper, we propose a novel defense-based explainable fake news detection framework. Specifically, we first propose an evidence extraction module to split the wisdom of crowds into two competing parties and respectively detect salient evidences. To gain concise insights from evidences, we then design a prompt-based module that utilizes a large language model to generate justifications by inferring reasons towards two possible veracities. Finally, we propose a defense-based inference module to determine veracity via modeling the defense among these justifications. Extensive experiments conducted on two real-world benchmarks demonstrate that our proposed method outperforms state-of-the-art baselines in terms of fake news detection and provides high-quality justifications.
Abstract:Weakly supervised video anomaly detection (WSVAD) is a challenging task. Generating fine-grained pseudo-labels based on weak-label and then self-training a classifier is currently a promising solution. However, since the existing methods use only RGB visual modality and the utilization of category text information is neglected, thus limiting the generation of more accurate pseudo-labels and affecting the performance of self-training. Inspired by the manual labeling process based on the event description, in this paper, we propose a novel pseudo-label generation and self-training framework based on Text Prompt with Normality Guidance (TPWNG) for WSVAD. Our idea is to transfer the rich language-visual knowledge of the contrastive language-image pre-training (CLIP) model for aligning the video event description text and corresponding video frames to generate pseudo-labels. Specifically, We first fine-tune the CLIP for domain adaptation by designing two ranking losses and a distributional inconsistency loss. Further, we propose a learnable text prompt mechanism with the assist of a normality visual prompt to further improve the matching accuracy of video event description text and video frames. Then, we design a pseudo-label generation module based on the normality guidance to infer reliable frame-level pseudo-labels. Finally, we introduce a temporal context self-adaptive learning module to learn the temporal dependencies of different video events more flexibly and accurately. Extensive experiments show that our method achieves state-of-the-art performance on two benchmark datasets, UCF-Crime and XD-Viole
Abstract:Weakly supervised semantic segmentation (WSSS) with image-level labels intends to achieve dense tasks without laborious annotations. However, due to the ambiguous contexts and fuzzy regions, the performance of WSSS, especially the stages of generating Class Activation Maps (CAMs) and refining pseudo masks, widely suffers from ambiguity while being barely noticed by previous literature. In this work, we propose UniA, a unified single-staged WSSS framework, to efficiently tackle this issue from the perspective of uncertainty inference and affinity diversification, respectively. When activating class objects, we argue that the false activation stems from the bias to the ambiguous regions during the feature extraction. Therefore, we design a more robust feature representation with a probabilistic Gaussian distribution and introduce the uncertainty estimation to avoid the bias. A distribution loss is particularly proposed to supervise the process, which effectively captures the ambiguity and models the complex dependencies among features. When refining pseudo labels, we observe that the affinity from the prevailing refinement methods intends to be similar among ambiguities. To this end, an affinity diversification module is proposed to promote diversity among semantics. A mutual complementing refinement is proposed to initially rectify the ambiguous affinity with multiple inferred pseudo labels. More importantly, a contrastive affinity loss is further designed to diversify the relations among unrelated semantics, which reliably propagates the diversity into the whole feature representations and helps generate better pseudo masks. Extensive experiments are conducted on PASCAL VOC, MS COCO, and medical ACDC datasets, which validate the efficiency of UniA tackling ambiguity and the superiority over recent single-staged or even most multi-staged competitors.
Abstract:Attributed to the frequent coupling of co-occurring objects and the limited supervision from image-level labels, the challenging co-occurrence problem is widely present and leads to false activation of objects in weakly supervised semantic segmentation (WSSS). In this work, we devise a 'Separate and Conquer' scheme SeCo to tackle this issue from dimensions of image space and feature space. In the image space, we propose to 'separate' the co-occurring objects with image decomposition by subdividing images into patches. Importantly, we assign each patch a category tag from Class Activation Maps (CAMs), which spatially helps remove the co-context bias and guide the subsequent representation. In the feature space, we propose to 'conquer' the false activation by enhancing semantic representation with multi-granularity knowledge contrast. To this end, a dual-teacher-single-student architecture is designed and tag-guided contrast is conducted to guarantee the correctness of knowledge and further facilitate the discrepancy among co-occurring objects. We streamline the multi-staged WSSS pipeline end-to-end and tackle co-occurrence without external supervision. Extensive experiments are conducted, validating the efficiency of our method tackling co-occurrence and the superiority over previous single-staged and even multi-staged competitors on PASCAL VOC and MS COCO. Code will be available at https://github.com/zwyang6/SeCo.git.
Abstract:High-quality whole-slide scanners are expensive, complex, and time-consuming, thus limiting the acquisition and utilization of high-resolution pathology whole-slide images in daily clinical work. Deep learning-based single-image super-resolution techniques are an effective way to solve this problem by synthesizing high-resolution images from low-resolution ones. However, the existing super-resolution models applied in pathology images can only work in fixed integer magnifications, significantly decreasing their applicability. Though methods based on implicit neural representation have shown promising results in arbitrary-scale super-resolution of natural images, applying them directly to pathology images is inadequate because they have unique fine-grained image textures different from natural images. Thus, we propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale super-resolution of pathology images to address this challenge. ISTE contains a pixel learning branch and a texture learning branch, which first learn pixel features and texture features, respectively. Then, we design a two-stage texture enhancement strategy to fuse the features from the two branches to obtain the super-resolution results, where the first stage is feature-based texture enhancement, and the second stage is spatial-domain-based texture enhancement. Extensive experiments on three public datasets show that ISTE outperforms existing fixed-scale and arbitrary-scale algorithms at multiple magnifications and helps to improve downstream task performance. To the best of our knowledge, this is the first work to achieve arbitrary-scale super-resolution in pathology images. Codes will be available.
Abstract:In recent years, we witness the explosion of false and unconfirmed information (i.e., rumors) that went viral on social media and shocked the public. Rumors can trigger versatile, mostly controversial stance expressions among social media users. Rumor verification and stance detection are different yet relevant tasks. Fake news debunking primarily focuses on determining the truthfulness of news articles, which oversimplifies the issue as fake news often combines elements of both truth and falsehood. Thus, it becomes crucial to identify specific instances of misinformation within the articles. In this research, we investigate a novel task in the field of fake news debunking, which involves detecting sentence-level misinformation. One of the major challenges in this task is the absence of a training dataset with sentence-level annotations regarding veracity. Inspired by the Multiple Instance Learning (MIL) approach, we propose a model called Weakly Supervised Detection of Misinforming Sentences (WSDMS). This model only requires bag-level labels for training but is capable of inferring both sentence-level misinformation and article-level veracity, aided by relevant social media conversations that are attentively contextualized with news sentences. We evaluate WSDMS on three real-world benchmarks and demonstrate that it outperforms existing state-of-the-art baselines in debunking fake news at both the sentence and article levels.
Abstract:The development of artificial intelligence systems for colonoscopy analysis often necessitates expert-annotated image datasets. However, limitations in dataset size and diversity impede model performance and generalisation. Image-text colonoscopy records from routine clinical practice, comprising millions of images and text reports, serve as a valuable data source, though annotating them is labour-intensive. Here we leverage recent advancements in large language and vision models and propose EndoKED, a data mining paradigm for deep knowledge extraction and distillation. EndoKED automates the transformation of raw colonoscopy records into image datasets with pixel-level annotation. We validate EndoKED using multi-centre datasets of raw colonoscopy records (~1 million images), demonstrating its superior performance in training polyp detection and segmentation models. Furthermore, the EndoKED pre-trained vision backbone enables data-efficient and generalisable learning for optical biopsy, achieving expert-level performance in both retrospective and prospective validation.