Abstract:Weakly supervised semantic segmentation (WSSS) with image-level labels intends to achieve dense tasks without laborious annotations. However, due to the ambiguous contexts and fuzzy regions, the performance of WSSS, especially the stages of generating Class Activation Maps (CAMs) and refining pseudo masks, widely suffers from ambiguity while being barely noticed by previous literature. In this work, we propose UniA, a unified single-staged WSSS framework, to efficiently tackle this issue from the perspective of uncertainty inference and affinity diversification, respectively. When activating class objects, we argue that the false activation stems from the bias to the ambiguous regions during the feature extraction. Therefore, we design a more robust feature representation with a probabilistic Gaussian distribution and introduce the uncertainty estimation to avoid the bias. A distribution loss is particularly proposed to supervise the process, which effectively captures the ambiguity and models the complex dependencies among features. When refining pseudo labels, we observe that the affinity from the prevailing refinement methods intends to be similar among ambiguities. To this end, an affinity diversification module is proposed to promote diversity among semantics. A mutual complementing refinement is proposed to initially rectify the ambiguous affinity with multiple inferred pseudo labels. More importantly, a contrastive affinity loss is further designed to diversify the relations among unrelated semantics, which reliably propagates the diversity into the whole feature representations and helps generate better pseudo masks. Extensive experiments are conducted on PASCAL VOC, MS COCO, and medical ACDC datasets, which validate the efficiency of UniA tackling ambiguity and the superiority over recent single-staged or even most multi-staged competitors.
Abstract:Point cloud registration is a task to estimate the rigid transformation between two unaligned scans, which plays an important role in many computer vision applications. Previous learning-based works commonly focus on supervised registration, which have limitations in practice. Recently, with the advance of inexpensive RGB-D sensors, several learning-based works utilize RGB-D data to achieve unsupervised registration. However, most of existing unsupervised methods follow a cascaded design or fuse RGB-D data in a unidirectional manner, which do not fully exploit the complementary information in the RGB-D data. To leverage the complementary information more effectively, we propose a network implementing multi-scale bidirectional fusion between RGB images and point clouds generated from depth images. By bidirectionally fusing visual and geometric features in multi-scales, more distinctive deep features for correspondence estimation can be obtained, making our registration more accurate. Extensive experiments on ScanNet and 3DMatch demonstrate that our method achieves new state-of-the-art performance. Code will be released at https://github.com/phdymz/PointMBF
Abstract:Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in radiotherapy treatment planning. Thus, it is of great significance to explore automatic segmentation approaches, among which deep learning-based approaches have evolved rapidly and witnessed remarkable progress in multi-organ segmentation. However, obtaining an appropriately sized and fine-grained annotated dataset of multiple organs is extremely hard and expensive. Such scarce annotation limits the development of high-performance multi-organ segmentation models but promotes many annotation-efficient learning paradigms. Among these, studies on transfer learning leveraging external datasets, semi-supervised learning using unannotated datasets and partially-supervised learning integrating partially-labeled datasets have led the dominant way to break such dilemma in multi-organ segmentation. We first review the traditional fully supervised method, then present a comprehensive and systematic elaboration of the 3 abovementioned learning paradigms in the context of multi-organ segmentation from both technical and methodological perspectives, and finally summarize their challenges and future trends.