Abstract:Implicit neural representations have recently demonstrated promising potential in arbitrary-scale Super-Resolution (SR) of images. Most existing methods predict the pixel in the SR image based on the queried coordinate and ensemble nearby features, overlooking the importance of incorporating high-frequency prior information in images, which results in limited performance in reconstructing high-frequency texture details in images. To address this issue, we propose the Local Implicit Wavelet Transformer (LIWT) to enhance the restoration of high-frequency texture details. Specifically, we decompose the features extracted by an encoder into four sub-bands containing different frequency information using Discrete Wavelet Transform (DWT). We then introduce the Wavelet Enhanced Residual Module (WERM) to transform these four sub-bands into high-frequency priors, followed by utilizing the Wavelet Mutual Projected Fusion (WMPF) and the Wavelet-aware Implicit Attention (WIA) to fully exploit the high-frequency prior information for recovering high-frequency details in images. We conducted extensive experiments on benchmark datasets to validate the effectiveness of LIWT. Both qualitative and quantitative results demonstrate that LIWT achieves promising performance in arbitrary-scale SR tasks, outperforming other state-of-the-art methods. The code is available at https://github.com/dmhdmhdmh/LIWT.
Abstract:The expensive fine-grained annotation and data scarcity have become the primary obstacles for the widespread adoption of deep learning-based Whole Slide Images (WSI) classification algorithms in clinical practice. Unlike few-shot learning methods in natural images that can leverage the labels of each image, existing few-shot WSI classification methods only utilize a small number of fine-grained labels or weakly supervised slide labels for training in order to avoid expensive fine-grained annotation. They lack sufficient mining of available WSIs, severely limiting WSI classification performance. To address the above issues, we propose a novel and efficient dual-tier few-shot learning paradigm for WSI classification, named FAST. FAST consists of a dual-level annotation strategy and a dual-branch classification framework. Firstly, to avoid expensive fine-grained annotation, we collect a very small number of WSIs at the slide level, and annotate an extremely small number of patches. Then, to fully mining the available WSIs, we use all the patches and available patch labels to build a cache branch, which utilizes the labeled patches to learn the labels of unlabeled patches and through knowledge retrieval for patch classification. In addition to the cache branch, we also construct a prior branch that includes learnable prompt vectors, using the text encoder of visual-language models for patch classification. Finally, we integrate the results from both branches to achieve WSI classification. Extensive experiments on binary and multi-class datasets demonstrate that our proposed method significantly surpasses existing few-shot classification methods and approaches the accuracy of fully supervised methods with only 0.22$\%$ annotation costs. All codes and models will be publicly available on https://github.com/fukexue/FAST.
Abstract:Multiple instance learning (MIL) problem is currently solved from either bag-classification or instance-classification perspective, both of which ignore important information contained in some instances and result in limited performance. For example, existing methods often face difficulty in learning hard positive instances. In this paper, we formulate MIL as a semi-supervised instance classification problem, so that all the labeled and unlabeled instances can be fully utilized to train a better classifier. The difficulty in this formulation is that all the labeled instances are negative in MIL, and traditional self-training techniques used in semi-supervised learning tend to degenerate in generating pseudo labels for the unlabeled instances in this scenario. To resolve this problem, we propose a weakly-supervised self-training method, in which we utilize the positive bag labels to construct a global constraint and a local constraint on the pseudo labels to prevent them from degenerating and force the classifier to learn hard positive instances. It is worth noting that easy positive instances are instances are far from the decision boundary in the classification process, while hard positive instances are those close to the decision boundary. Through iterative optimization, the pseudo labels can gradually approach the true labels. Extensive experiments on two MNIST synthetic datasets, five traditional MIL benchmark datasets and two histopathology whole slide image datasets show that our method achieved new SOTA performance on all of them. The code will be publicly available.
Abstract:High-quality whole-slide scanners are expensive, complex, and time-consuming, thus limiting the acquisition and utilization of high-resolution pathology whole-slide images in daily clinical work. Deep learning-based single-image super-resolution techniques are an effective way to solve this problem by synthesizing high-resolution images from low-resolution ones. However, the existing super-resolution models applied in pathology images can only work in fixed integer magnifications, significantly decreasing their applicability. Though methods based on implicit neural representation have shown promising results in arbitrary-scale super-resolution of natural images, applying them directly to pathology images is inadequate because they have unique fine-grained image textures different from natural images. Thus, we propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale super-resolution of pathology images to address this challenge. ISTE contains a pixel learning branch and a texture learning branch, which first learn pixel features and texture features, respectively. Then, we design a two-stage texture enhancement strategy to fuse the features from the two branches to obtain the super-resolution results, where the first stage is feature-based texture enhancement, and the second stage is spatial-domain-based texture enhancement. Extensive experiments on three public datasets show that ISTE outperforms existing fixed-scale and arbitrary-scale algorithms at multiple magnifications and helps to improve downstream task performance. To the best of our knowledge, this is the first work to achieve arbitrary-scale super-resolution in pathology images. Codes will be available.
Abstract:Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. Additionally, we also highlight active learning works that are specifically tailored to medical image analysis. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis.
Abstract:The development of artificial intelligence systems for colonoscopy analysis often necessitates expert-annotated image datasets. However, limitations in dataset size and diversity impede model performance and generalisation. Image-text colonoscopy records from routine clinical practice, comprising millions of images and text reports, serve as a valuable data source, though annotating them is labour-intensive. Here we leverage recent advancements in large language and vision models and propose EndoKED, a data mining paradigm for deep knowledge extraction and distillation. EndoKED automates the transformation of raw colonoscopy records into image datasets with pixel-level annotation. We validate EndoKED using multi-centre datasets of raw colonoscopy records (~1 million images), demonstrating its superior performance in training polyp detection and segmentation models. Furthermore, the EndoKED pre-trained vision backbone enables data-efficient and generalisable learning for optical biopsy, achieving expert-level performance in both retrospective and prospective validation.
Abstract:Point cloud registration is a task to estimate the rigid transformation between two unaligned scans, which plays an important role in many computer vision applications. Previous learning-based works commonly focus on supervised registration, which have limitations in practice. Recently, with the advance of inexpensive RGB-D sensors, several learning-based works utilize RGB-D data to achieve unsupervised registration. However, most of existing unsupervised methods follow a cascaded design or fuse RGB-D data in a unidirectional manner, which do not fully exploit the complementary information in the RGB-D data. To leverage the complementary information more effectively, we propose a network implementing multi-scale bidirectional fusion between RGB images and point clouds generated from depth images. By bidirectionally fusing visual and geometric features in multi-scales, more distinctive deep features for correspondence estimation can be obtained, making our registration more accurate. Extensive experiments on ScanNet and 3DMatch demonstrate that our method achieves new state-of-the-art performance. Code will be released at https://github.com/phdymz/PointMBF
Abstract:Active learning (AL) is an effective approach to select the most informative samples to label so as to reduce the annotation cost. Existing AL methods typically work under the closed-set assumption, i.e., all classes existing in the unlabeled sample pool need to be classified by the target model. However, in some practical clinical tasks, the unlabeled pool may contain not only the target classes that need to be fine-grainedly classified, but also non-target classes that are irrelevant to the clinical tasks. Existing AL methods cannot work well in this scenario because they tend to select a large number of non-target samples. In this paper, we formulate this scenario as an open-set AL problem and propose an efficient framework, OpenAL, to address the challenge of querying samples from an unlabeled pool with both target class and non-target class samples. Experiments on fine-grained classification of pathology images show that OpenAL can significantly improve the query quality of target class samples and achieve higher performance than current state-of-the-art AL methods. Code is available at https://github.com/miccaiif/OpenAL.
Abstract:Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag, and the patches cut out of it are treated as instances. Existing methods either train an instance classifier through pseudo-labeling or aggregate instance features into a bag feature through attention mechanisms and then train a bag classifier, where the attention scores can be used for instance-level classification. However, the pseudo instance labels constructed by the former usually contain a lot of noise, and the attention scores constructed by the latter are not accurate enough, both of which affect their performance. In this paper, we propose an instance-level MIL framework based on contrastive learning and prototype learning to effectively accomplish both instance classification and bag classification tasks. To this end, we propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting to effectively learn instance feature representation. We also propose an accurate pseudo label generation method through prototype learning. We then develop a joint training strategy for weakly supervised contrastive learning, prototype learning, and instance classifier training. Extensive experiments and visualizations on four datasets demonstrate the powerful performance of our method. Codes will be available.
Abstract:This paper introduces the novel concept of few-shot weakly supervised learning for pathology Whole Slide Image (WSI) classification, denoted as FSWC. A solution is proposed based on prompt learning and the utilization of a large language model, GPT-4. Since a WSI is too large and needs to be divided into patches for processing, WSI classification is commonly approached as a Multiple Instance Learning (MIL) problem. In this context, each WSI is considered a bag, and the obtained patches are treated as instances. The objective of FSWC is to classify both bags and instances with only a limited number of labeled bags. Unlike conventional few-shot learning problems, FSWC poses additional challenges due to its weak bag labels within the MIL framework. Drawing inspiration from the recent achievements of vision-language models (V-L models) in downstream few-shot classification tasks, we propose a two-level prompt learning MIL framework tailored for pathology, incorporating language prior knowledge. Specifically, we leverage CLIP to extract instance features for each patch, and introduce a prompt-guided pooling strategy to aggregate these instance features into a bag feature. Subsequently, we employ a small number of labeled bags to facilitate few-shot prompt learning based on the bag features. Our approach incorporates the utilization of GPT-4 in a question-and-answer mode to obtain language prior knowledge at both the instance and bag levels, which are then integrated into the instance and bag level language prompts. Additionally, a learnable component of the language prompts is trained using the available few-shot labeled data. We conduct extensive experiments on three real WSI datasets encompassing breast cancer, lung cancer, and cervical cancer, demonstrating the notable performance of the proposed method in bag and instance classification. All codes will be made publicly accessible.