Abstract:Probabilistic embeddings have several advantages over deterministic embeddings as they map each data point to a distribution, which better describes the uncertainty and complexity of data. Many works focus on adjusting the distribution constraint under the Information Bottleneck (IB) principle to enhance representation learning. However, these proposed regularization terms only consider the constraint of each latent variable, omitting the structural information between latent variables. In this paper, we propose a novel structural entropy-guided probabilistic coding model, named SEPC. Specifically, we incorporate the relationship between latent variables into the optimization by proposing a structural entropy regularization loss. Besides, as traditional structural information theory is not well-suited for regression tasks, we propose a probabilistic encoding tree, transferring regression tasks to classification tasks while diminishing the influence of the transformation. Experimental results across 12 natural language understanding tasks, including both classification and regression tasks, demonstrate the superior performance of SEPC compared to other state-of-the-art models in terms of effectiveness, generalization capability, and robustness to label noise. The codes and datasets are available at https://github.com/SELGroup/SEPC.
Abstract:This paper shows how an uncertainty-aware, deep neural network can be trained to detect, recognise and localise objects in 2D RGB images, in applications lacking annotated train-ng datasets. We propose a self-supervising teacher-student pipeline, in which a relatively simple teacher classifier, trained with only a few labelled 2D thumbnails, automatically processes a larger body of unlabelled RGB-D data to teach a student network based on a modified YOLOv3 architecture. Firstly, 3D object detection with back projection is used to automatically extract and teach 2D detection and localisation information to the student network. Secondly, a weakly supervised 2D thumbnail classifier, with minimal training on a small number of hand-labelled images, is used to teach object category recognition. Thirdly, we use a Gaussian Process GP to encode and teach a robust uncertainty estimation functionality, so that the student can output confidence scores with each categorization. The resulting student significantly outperforms the same YOLO architecture trained directly on the same amount of labelled data. Our GP-based approach yields robust and meaningful uncertainty estimations for complex industrial object classifications. The end-to-end network is also capable of real-time processing, needed for robotics applications. Our method can be applied to many important industrial tasks, where labelled datasets are typically unavailable. In this paper, we demonstrate an example of detection, localisation, and object category recognition of nuclear mixed-waste materials in highly cluttered and unstructured scenes. This is critical for robotic sorting and handling of legacy nuclear waste, which poses complex environmental remediation challenges in many nuclearised nations.
Abstract:Graph neural networks (GNNs) have become the dominant solution for learning on graphs, the typical non-Euclidean structures. Conventional GNNs, constructed with the Artificial Neuron Network (ANN), have achieved impressive performance at the cost of high computation and energy consumption. In parallel, spiking GNNs with brain-like spiking neurons are drawing increasing research attention owing to the energy efficiency. So far, existing spiking GNNs consider graphs in Euclidean space, ignoring the structural geometry, and suffer from the high latency issue due to Back-Propagation-Through-Time (BPTT) with the surrogate gradient. In light of the aforementioned issues, we are devoted to exploring spiking GNN on Riemannian manifolds, and present a Manifold-valued Spiking GNN (MSG). In particular, we design a new spiking neuron on geodesically complete manifolds with the diffeomorphism, so that BPTT regarding the spikes is replaced by the proposed differentiation via manifold. Theoretically, we show that MSG approximates a solver of the manifold ordinary differential equation. Extensive experiments on common graphs show the proposed MSG achieves superior performance to previous spiking GNNs and energy efficiency to conventional GNNs.
Abstract:In StyleGAN, convolution kernels are shaped by both static parameters shared across images and dynamic modulation factors $w^+\in\mathcal{W}^+$ specific to each image. Therefore, $\mathcal{W}^+$ space is often used for image inversion and editing. However, pre-trained model struggles with synthesizing out-of-domain images due to the limited capabilities of $\mathcal{W}^+$ and its resultant kernels, necessitating full fine-tuning or adaptation through a complex hypernetwork. This paper proposes an efficient refining strategy for dynamic kernels. The key idea is to modify kernels by low-rank residuals, learned from input image or domain guidance. These residuals are generated by matrix multiplication between two sets of tokens with the same number, which controls the complexity. We validate the refining scheme in image inversion and domain adaptation. In the former task, we design grouped transformer blocks to learn these token sets by one- or two-stage training. In the latter task, token sets are directly optimized to support synthesis in the target domain while preserving original content. Extensive experiments show that our method achieves low distortions for image inversion and high quality for out-of-domain editing.
Abstract:Training social event detection models through federated learning (FedSED) aims to improve participants' performance on the task. However, existing federated learning paradigms are inadequate for achieving FedSED's objective and exhibit limitations in handling the inherent heterogeneity in social data. This paper proposes a personalized federated learning framework with a dual aggregation mechanism for social event detection, namely DAMe. We present a novel local aggregation strategy utilizing Bayesian optimization to incorporate global knowledge while retaining local characteristics. Moreover, we introduce a global aggregation strategy to provide clients with maximum external knowledge of their preferences. In addition, we incorporate a global-local event-centric constraint to prevent local overfitting and ``client-drift''. Experiments within a realistic simulation of a natural federated setting, utilizing six social event datasets spanning six languages and two social media platforms, along with an ablation study, have demonstrated the effectiveness of the proposed framework. Further robustness analyses have shown that DAMe is resistant to injection attacks.
Abstract:Attribution-based explanations are garnering increasing attention recently and have emerged as the predominant approach towards \textit{eXplanable Artificial Intelligence}~(XAI). However, the absence of consistent configurations and systematic investigations in prior literature impedes comprehensive evaluations of existing methodologies. In this work, we introduce {Meta-Rank}, an open platform for benchmarking attribution methods in the image domain. Presently, Meta-Rank assesses eight exemplary attribution methods using six renowned model architectures on four diverse datasets, employing both the \textit{Most Relevant First} (MoRF) and \textit{Least Relevant First} (LeRF) evaluation protocols. Through extensive experimentation, our benchmark reveals three insights in attribution evaluation endeavors: 1) evaluating attribution methods under disparate settings can yield divergent performance rankings; 2) although inconsistent across numerous cases, the performance rankings exhibit remarkable consistency across distinct checkpoints along the same training trajectory; 3) prior attempts at consistent evaluation fare no better than baselines when extended to more heterogeneous models and datasets. Our findings underscore the necessity for future research in this domain to conduct rigorous evaluations encompassing a broader range of models and datasets, and to reassess the assumptions underlying the empirical success of different attribution methods. Our code is publicly available at \url{https://github.com/TreeThree-R/Meta-Rank}.
Abstract:Cross-domain Aspect Sentiment Triplet Extraction (ASTE) aims to extract fine-grained sentiment elements from target domain sentences by leveraging the knowledge acquired from the source domain. Due to the absence of labeled data in the target domain, recent studies tend to rely on pre-trained language models to generate large amounts of synthetic data for training purposes. However, these approaches entail additional computational costs associated with the generation process. Different from them, we discover a striking resemblance between table-filling methods in ASTE and two-stage Object Detection (OD) in computer vision, which inspires us to revisit the cross-domain ASTE task and approach it from an OD standpoint. This allows the model to benefit from the OD extraction paradigm and region-level alignment. Building upon this premise, we propose a novel method named \textbf{T}able-\textbf{F}illing via \textbf{M}ean \textbf{T}eacher (TFMT). Specifically, the table-filling methods encode the sentence into a 2D table to detect word relations, while TFMT treats the table as a feature map and utilizes a region consistency to enhance the quality of those generated pseudo labels. Additionally, considering the existence of the domain gap, a cross-domain consistency based on Maximum Mean Discrepancy is designed to alleviate domain shift problems. Our method achieves state-of-the-art performance with minimal parameters and computational costs, making it a strong baseline for cross-domain ASTE.
Abstract:Social event detection refers to extracting relevant message clusters from social media data streams to represent specific events in the real world. Social event detection is important in numerous areas, such as opinion analysis, social safety, and decision-making. Most current methods are supervised and require access to large amounts of data. These methods need prior knowledge of the events and carry a high risk of leaking sensitive information in the messages, making them less applicable in open-world settings. Therefore, conducting unsupervised detection while fully utilizing the rich information in the messages and protecting data privacy remains a significant challenge. To this end, we propose a novel social event detection framework, ADP-SEMEvent, an unsupervised social event detection method that prioritizes privacy. Specifically, ADP-SEMEvent is divided into two stages, i.e., the construction stage of the private message graph and the clustering stage of the private message graph. In the first stage, an adaptive differential privacy approach is used to construct a private message graph. In this process, our method can adaptively apply differential privacy based on the events occurring each day in an open environment to maximize the use of the privacy budget. In the second stage, to address the reduction in data utility caused by noise, a novel 2-dimensional structural entropy minimization algorithm based on optimal subgraphs is used to detect events in the message graph. The highlight of this process is unsupervised and does not compromise differential privacy. Extensive experiments on two public datasets demonstrate that ADP-SEMEvent can achieve detection performance comparable to state-of-the-art methods while maintaining reasonable privacy budget parameters.
Abstract:DEtection TRansformer (DETR) becomes a dominant paradigm, mainly due to its common architecture with high accuracy and no post-processing. However, DETR suffers from unstable training dynamics. It consumes more data and epochs to converge compared with CNN-based detectors. This paper aims to stabilize DETR training through the online distillation. It utilizes a teacher model, accumulated by Exponential Moving Average (EMA), and distills its knowledge into the online model in following three aspects. First, the matching relation between object queries and ground truth (GT) boxes in the teacher is employed to guide the student, so queries within the student are not only assigned labels based on their own predictions, but also refer to the matching results from the teacher. Second, the teacher's initial query is given to the online student, and its prediction is directly constrained by the corresponding output from the teacher. Finally, the object queries from teacher's different decoding stages are used to build the auxiliary groups to accelerate the convergence. For each GT, two queries with the least matching costs are selected into this extra group, and they predict the GT box and participate the optimization. Extensive experiments show that the proposed OD-DETR successfully stabilizes the training, and significantly increases the performance without bringing in more parameters.
Abstract:Information diffusion prediction is fundamental to understand the structure and organization of the online social networks, and plays a crucial role to blocking rumor spread, influence maximization, political propaganda, etc. So far, most existing solutions primarily predict the next user who will be informed with historical cascades, but ignore an important factor in the diffusion process - the time. Such limitation motivates us to pose the problem of the time-aware personalized information diffusion prediction for the first time, telling the time when the target user will be informed. In this paper, we address this problem from a fresh geometric perspective of Ricci curvature, and propose a novel Ricci-curvature regulated Ordinary Differential Equation (R-ODE). In the diffusion process, R-ODE considers that the inter-correlated users are organized in a dynamic system in the representation space, and the cascades give the observations sampled from the continuous realm. At each infection time, the message diffuses along the largest Ricci curvature, signifying less transportation effort. In the continuous realm, the message triggers users' movement, whose trajectory in the space is parameterized by an ODE with graph neural network. Consequently, R-ODE predicts the infection time of a target user by the movement trajectory learnt from the observations. Extensive experiments evaluate the personalized time prediction ability of R-ODE, and show R-ODE outperforms the state-of-the-art baselines.