Abstract:In StyleGAN, convolution kernels are shaped by both static parameters shared across images and dynamic modulation factors $w^+\in\mathcal{W}^+$ specific to each image. Therefore, $\mathcal{W}^+$ space is often used for image inversion and editing. However, pre-trained model struggles with synthesizing out-of-domain images due to the limited capabilities of $\mathcal{W}^+$ and its resultant kernels, necessitating full fine-tuning or adaptation through a complex hypernetwork. This paper proposes an efficient refining strategy for dynamic kernels. The key idea is to modify kernels by low-rank residuals, learned from input image or domain guidance. These residuals are generated by matrix multiplication between two sets of tokens with the same number, which controls the complexity. We validate the refining scheme in image inversion and domain adaptation. In the former task, we design grouped transformer blocks to learn these token sets by one- or two-stage training. In the latter task, token sets are directly optimized to support synthesis in the target domain while preserving original content. Extensive experiments show that our method achieves low distortions for image inversion and high quality for out-of-domain editing.
Abstract:In this paper, we propose a model-free feature selection method for ultra-high dimensional data with mass features. This is a two phases procedure that we propose to use the fused Kolmogorov filter with the random forest based RFE to remove model limitations and reduce the computational complexity. The method is fully nonparametric and can work with various types of datasets. It has several appealing characteristics, i.e., accuracy, model-free, and computational efficiency, and can be widely used in practical problems, such as multiclass classification, nonparametric regression, and Poisson regression, among others. We show that the proposed method is selection consistent and $L_2$ consistent under weak regularity conditions. We further demonstrate the superior performance of the proposed method over other existing methods by simulations and real data examples.