Abstract:Pathological cell semantic segmentation is a fundamental technology in computational pathology, essential for applications like cancer diagnosis and effective treatment. Given that multiple cell types exist across various organs, with subtle differences in cell size and shape, multi-organ, multi-class cell segmentation is particularly challenging. Most existing methods employ multi-branch frameworks to enhance feature extraction, but often result in complex architectures. Moreover, reliance on visual information limits performance in multi-class analysis due to intricate textural details. To address these challenges, we propose a Multi-OrgaN multi-Class cell semantic segmentation method with a single brancH (MONCH) that leverages vision-language input. Specifically, we design a hierarchical feature extraction mechanism to provide coarse-to-fine-grained features for segmenting cells of various shapes, including high-frequency, convolutional, and topological features. Inspired by the synergy of textual and multi-grained visual features, we introduce a progressive prompt decoder to harmonize multimodal information, integrating features from fine to coarse granularity for better context capture. Extensive experiments on the PanNuke dataset, which has significant class imbalance and subtle cell size and shape variations, demonstrate that MONCH outperforms state-of-the-art cell segmentation methods and vision-language models. Codes and implementations will be made publicly available.
Abstract:Segmenting internal structure from echocardiography is essential for the diagnosis and treatment of various heart diseases. Semi-supervised learning shows its ability in alleviating annotations scarcity. While existing semi-supervised methods have been successful in image segmentation across various medical imaging modalities, few have attempted to design methods specifically addressing the challenges posed by the poor contrast, blurred edge details and noise of echocardiography. These characteristics pose challenges to the generation of high-quality pseudo-labels in semi-supervised segmentation based on Mean Teacher. Inspired by human reflection on erroneous practices, we devise an error reflection strategy for echocardiography semi-supervised segmentation architecture. The process triggers the model to reflect on inaccuracies in unlabeled image segmentation, thereby enhancing the robustness of pseudo-label generation. Specifically, the strategy is divided into two steps. The first step is called reconstruction reflection. The network is tasked with reconstructing authentic proxy images from the semantic masks of unlabeled images and their auxiliary sketches, while maximizing the structural similarity between the original inputs and the proxies. The second step is called guidance correction. Reconstruction error maps decouple unreliable segmentation regions. Then, reliable data that are more likely to occur near high-density areas are leveraged to guide the optimization of unreliable data potentially located around decision boundaries. Additionally, we introduce an effective data augmentation strategy, termed as multi-scale mixing up strategy, to minimize the empirical distribution gap between labeled and unlabeled images and perceive diverse scales of cardiac anatomical structures. Extensive experiments demonstrate the competitiveness of the proposed method.
Abstract:The success of medical image segmentation usually requires a large number of high-quality labels. But since the labeling process is usually affected by the raters' varying skill levels and characteristics, the estimated masks provided by different raters usually suffer from high inter-rater variability. In this paper, we propose a simple yet effective Label Filling framework, termed as LF-Net, predicting the groundtruth segmentation label given only noisy annotations during training. The fundamental idea of label filling is to supervise the segmentation model by a subset of pixels with trustworthy labels, meanwhile filling labels of other pixels by mixed supervision. More concretely, we propose a qualified majority voting strategy, i.e., a threshold voting scheme is designed to model agreement among raters and the majority-voted labels of the selected subset of pixels are regarded as supervision. To fill labels of other pixels, two types of mixed auxiliary supervision are proposed: a soft label learned from intrinsic structures of noisy annotations, and raters' characteristics labels which propagate individual rater's characteristics information. LF-Net has two main advantages. 1) Training with trustworthy pixels incorporates training with confident supervision, guiding the direction of groundtruth label learning. 2) Two types of mixed supervision prevent over-fitting issues when the network is supervised by a subset of pixels, and guarantee high fidelity with the true label. Results on five datasets of diverse imaging modalities show that our LF-Net boosts segmentation accuracy in all datasets compared with state-of-the-art methods, with even a 7% improvement in DSC for MS lesion segmentation.
Abstract:In StyleGAN, convolution kernels are shaped by both static parameters shared across images and dynamic modulation factors $w^+\in\mathcal{W}^+$ specific to each image. Therefore, $\mathcal{W}^+$ space is often used for image inversion and editing. However, pre-trained model struggles with synthesizing out-of-domain images due to the limited capabilities of $\mathcal{W}^+$ and its resultant kernels, necessitating full fine-tuning or adaptation through a complex hypernetwork. This paper proposes an efficient refining strategy for dynamic kernels. The key idea is to modify kernels by low-rank residuals, learned from input image or domain guidance. These residuals are generated by matrix multiplication between two sets of tokens with the same number, which controls the complexity. We validate the refining scheme in image inversion and domain adaptation. In the former task, we design grouped transformer blocks to learn these token sets by one- or two-stage training. In the latter task, token sets are directly optimized to support synthesis in the target domain while preserving original content. Extensive experiments show that our method achieves low distortions for image inversion and high quality for out-of-domain editing.
Abstract:Despite recent progress in enhancing the efficacy of Open-Domain Continual Learning (ODCL) in Vision-Language Models (VLM), failing to (1) correctly identify the Task-ID of a test image and (2) use only the category set corresponding to the Task-ID, while preserving the knowledge related to each domain, cannot address the two primary challenges of ODCL: forgetting old knowledge and maintaining zero-shot capabilities, as well as the confusions caused by category-relatedness between domains. In this paper, we propose a simple yet effective solution: leveraging intra-domain category-aware prototypes for ODCL in CLIP (DPeCLIP), where the prototype is the key to bridging the above two processes. Concretely, we propose a training-free Task-ID discriminator method, by utilizing prototypes as classifiers for identifying Task-IDs. Furthermore, to maintain the knowledge corresponding to each domain, we incorporate intra-domain category-aware prototypes as domain prior prompts into the training process. Extensive experiments conducted on 11 different datasets demonstrate the effectiveness of our approach, achieving 2.37% and 1.14% average improvement in class-incremental and task-incremental settings, respectively.
Abstract:Due to the computational complexity of self-attention (SA), prevalent techniques for image deblurring often resort to either adopting localized SA or employing coarse-grained global SA methods, both of which exhibit drawbacks such as compromising global modeling or lacking fine-grained correlation. In order to address this issue by effectively modeling long-range dependencies without sacrificing fine-grained details, we introduce a novel approach termed Local Frequency Transformer (LoFormer). Within each unit of LoFormer, we incorporate a Local Channel-wise SA in the frequency domain (Freq-LC) to simultaneously capture cross-covariance within low- and high-frequency local windows. These operations offer the advantage of (1) ensuring equitable learning opportunities for both coarse-grained structures and fine-grained details, and (2) exploring a broader range of representational properties compared to coarse-grained global SA methods. Additionally, we introduce an MLP Gating mechanism complementary to Freq-LC, which serves to filter out irrelevant features while enhancing global learning capabilities. Our experiments demonstrate that LoFormer significantly improves performance in the image deblurring task, achieving a PSNR of 34.09 dB on the GoPro dataset with 126G FLOPs. https://github.com/DeepMed-Lab-ECNU/Single-Image-Deblur
Abstract:This paper focuses on the dataset-free Blind Image Super-Resolution (BISR). Unlike existing dataset-free BISR methods that focus on obtaining a degradation kernel for the entire image, we are the first to explicitly design a spatially-variant degradation model for each pixel. Our method also benefits from having a significantly smaller number of learnable parameters compared to data-driven spatially-variant BISR methods. Concretely, each pixel's degradation kernel is expressed as a linear combination of a learnable dictionary composed of a small number of spatially-variant atom kernels. The coefficient matrices of the atom degradation kernels are derived using membership functions of fuzzy set theory. We construct a novel Probabilistic BISR model with tailored likelihood function and prior terms. Subsequently, we employ the Monte Carlo EM algorithm to infer the degradation kernels for each pixel. Our method achieves a significant improvement over other state-of-the-art BISR methods, with an average improvement of 1 dB (2x).Code will be released at https://github.com/shaojieguoECNU/SVDSR.
Abstract:Despite the recent progress in enhancing the efficacy of image deblurring, the limited decoding capability constrains the upper limit of State-Of-The-Art (SOTA) methods. This paper proposes a pioneering work, Adaptive Patch Exiting Reversible Decoder (AdaRevD), to explore their insufficient decoding capability. By inheriting the weights of the well-trained encoder, we refactor a reversible decoder which scales up the single-decoder training to multi-decoder training while remaining GPU memory-friendly. Meanwhile, we show that our reversible structure gradually disentangles high-level degradation degree and low-level blur pattern (residual of the blur image and its sharp counterpart) from compact degradation representation. Besides, due to the spatially-variant motion blur kernels, different blur patches have various deblurring difficulties. We further introduce a classifier to learn the degradation degree of image patches, enabling them to exit at different sub-decoders for speedup. Experiments show that our AdaRevD pushes the limit of image deblurring, e.g., achieving 34.60 dB in PSNR on GoPro dataset.
Abstract:DEtection TRansformer (DETR) becomes a dominant paradigm, mainly due to its common architecture with high accuracy and no post-processing. However, DETR suffers from unstable training dynamics. It consumes more data and epochs to converge compared with CNN-based detectors. This paper aims to stabilize DETR training through the online distillation. It utilizes a teacher model, accumulated by Exponential Moving Average (EMA), and distills its knowledge into the online model in following three aspects. First, the matching relation between object queries and ground truth (GT) boxes in the teacher is employed to guide the student, so queries within the student are not only assigned labels based on their own predictions, but also refer to the matching results from the teacher. Second, the teacher's initial query is given to the online student, and its prediction is directly constrained by the corresponding output from the teacher. Finally, the object queries from teacher's different decoding stages are used to build the auxiliary groups to accelerate the convergence. For each GT, two queries with the least matching costs are selected into this extra group, and they predict the GT box and participate the optimization. Extensive experiments show that the proposed OD-DETR successfully stabilizes the training, and significantly increases the performance without bringing in more parameters.
Abstract:Medical imaging is limited by acquisition time and scanning equipment. CT and MR volumes, reconstructed with thicker slices, are anisotropic with high in-plane resolution and low through-plane resolution. We reveal an intriguing phenomenon that due to the mentioned nature of data, performing slice-wise interpolation from the axial view can yield greater benefits than performing super-resolution from other views. Based on this observation, we propose an Inter-Intra-slice Interpolation Network (I$^3$Net), which fully explores information from high in-plane resolution and compensates for low through-plane resolution. The through-plane branch supplements the limited information contained in low through-plane resolution from high in-plane resolution and enables continual and diverse feature learning. In-plane branch transforms features to the frequency domain and enforces an equal learning opportunity for all frequency bands in a global context learning paradigm. We further propose a cross-view block to take advantage of the information from all three views online. Extensive experiments on two public datasets demonstrate the effectiveness of I$^3$Net, and noticeably outperforms state-of-the-art super-resolution, video frame interpolation and slice interpolation methods by a large margin. We achieve 43.90dB in PSNR, with at least 1.14dB improvement under the upscale factor of $\times$2 on MSD dataset with faster inference. Code is available at https://github.com/DeepMed-Lab-ECNU/Medical-Image-Reconstruction.