Abstract:This paper focuses on the dataset-free Blind Image Super-Resolution (BISR). Unlike existing dataset-free BISR methods that focus on obtaining a degradation kernel for the entire image, we are the first to explicitly design a spatially-variant degradation model for each pixel. Our method also benefits from having a significantly smaller number of learnable parameters compared to data-driven spatially-variant BISR methods. Concretely, each pixel's degradation kernel is expressed as a linear combination of a learnable dictionary composed of a small number of spatially-variant atom kernels. The coefficient matrices of the atom degradation kernels are derived using membership functions of fuzzy set theory. We construct a novel Probabilistic BISR model with tailored likelihood function and prior terms. Subsequently, we employ the Monte Carlo EM algorithm to infer the degradation kernels for each pixel. Our method achieves a significant improvement over other state-of-the-art BISR methods, with an average improvement of 1 dB (2x).Code will be released at https://github.com/shaojieguoECNU/SVDSR.
Abstract:Medical imaging is limited by acquisition time and scanning equipment. CT and MR volumes, reconstructed with thicker slices, are anisotropic with high in-plane resolution and low through-plane resolution. We reveal an intriguing phenomenon that due to the mentioned nature of data, performing slice-wise interpolation from the axial view can yield greater benefits than performing super-resolution from other views. Based on this observation, we propose an Inter-Intra-slice Interpolation Network (I$^3$Net), which fully explores information from high in-plane resolution and compensates for low through-plane resolution. The through-plane branch supplements the limited information contained in low through-plane resolution from high in-plane resolution and enables continual and diverse feature learning. In-plane branch transforms features to the frequency domain and enforces an equal learning opportunity for all frequency bands in a global context learning paradigm. We further propose a cross-view block to take advantage of the information from all three views online. Extensive experiments on two public datasets demonstrate the effectiveness of I$^3$Net, and noticeably outperforms state-of-the-art super-resolution, video frame interpolation and slice interpolation methods by a large margin. We achieve 43.90dB in PSNR, with at least 1.14dB improvement under the upscale factor of $\times$2 on MSD dataset with faster inference. Code is available at https://github.com/DeepMed-Lab-ECNU/Medical-Image-Reconstruction.