Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
Abstract:Composed Image Retrieval (CIR) aims to retrieve target images that closely resemble a reference image while integrating user-specified textual modifications, thereby capturing user intent more precisely. Existing training-free zero-shot CIR (ZS-CIR) methods often employ a two-stage process: they first generate a caption for the reference image and then use Large Language Models for reasoning to obtain a target description. However, these methods suffer from missing critical visual details and limited reasoning capabilities, leading to suboptimal retrieval performance. To address these challenges, we propose a novel, training-free one-stage method, One-Stage Reflective Chain-of-Thought Reasoning for ZS-CIR (OSrCIR), which employs Multimodal Large Language Models to retain essential visual information in a single-stage reasoning process, eliminating the information loss seen in two-stage methods. Our Reflective Chain-of-Thought framework further improves interpretative accuracy by aligning manipulation intent with contextual cues from reference images. OSrCIR achieves performance gains of 1.80% to 6.44% over existing training-free methods across multiple tasks, setting new state-of-the-art results in ZS-CIR and enhancing its utility in vision-language applications. Our code will be available at https://github.com/Pter61/osrcir2024/.
Abstract:The personalization techniques of diffusion models succeed in generating specific concepts but also pose threats to copyright protection and illegal use. Model Watermarking is an effective method to prevent the unauthorized use of subject-driven or style-driven image generation, safeguarding concept copyrights. However, under the goal of concept-oriented protection, current watermarking schemes typically add watermarks to all images rather than applying them in a refined manner targeted at specific concepts. Additionally, the personalization techniques of diffusion models can easily remove watermarks. Existing watermarking methods struggle to achieve fine-grained watermark embedding with a few images of specific concept and prevent removal of watermarks through personalized fine-tuning. Therefore, we introduce a novel concept-oriented watermarking framework that seamlessly embeds imperceptible watermarks into the concept of diffusion models. We conduct extensive experiments and ablation studies to verify our framework. Our code is available at https://anonymous.4open.science/r/Conceptwm-4EB3/.
Abstract:Zero-Shot Composed Image Retrieval (ZS-CIR) supports diverse tasks with a broad range of visual content manipulation intentions that can be related to domain, scene, object, and attribute. A key challenge for ZS-CIR is to accurately map image representation to a pseudo-word token that captures the manipulation intention relevant image information for generalized CIR. However, existing methods between the retrieval and pre-training stages lead to significant redundancy in the pseudo-word tokens. In this paper, we propose a novel denoising image-to-word mapping approach, named Denoise-I2W, for mapping images into denoising pseudo-word tokens that, without intention-irrelevant visual information, enhance accurate ZS-CIR. Specifically, a pseudo triplet construction module first automatically constructs pseudo triples (\textit{i.e.,} a pseudo-reference image, a pseudo-manipulation text, and a target image) for pre-training the denoising mapping network. Then, a pseudo-composed mapping module maps the pseudo-reference image to a pseudo-word token and combines it with the pseudo-manipulation text with manipulation intention. This combination aligns with the target image, facilitating denoising intention-irrelevant visual information for mapping. Our proposed Denoise-I2W is a model-agnostic and annotation-free approach. It demonstrates strong generalization capabilities across three state-of-the-art ZS-CIR models on four benchmark datasets. By integrating Denoise-I2W with existing best models, we obtain consistent and significant performance boosts ranging from 1.45\% to 4.17\% over the best methods without increasing inference costs. and achieve new state-of-the-art results on ZS-CIR. Our code is available at \url{https://github.com/Pter61/denoise-i2w-tmm}.
Abstract:Singing voice synthesis (SVS) system is expected to generate high-fidelity singing voice from given music scores (lyrics, duration and pitch). Recently, diffusion models have performed well in this field. However, sacrificing inference speed to exchange with high-quality sample generation limits its application scenarios. In order to obtain high quality synthetic singing voice more efficiently, we propose a singing voice synthesis method based on the consistency model, ConSinger, to achieve high-fidelity singing voice synthesis with minimal steps. The model is trained by applying consistency constraint and the generation quality is greatly improved at the expense of a small amount of inference speed. Our experiments show that ConSinger is highly competitive with the baseline model in terms of generation speed and quality. Audio samples are available at https://keylxiao.github.io/consinger.
Abstract:Due to the recurrent structure of RNN, the long information propagation path poses limitations in capturing long-term dependencies, gradient explosion/vanishing issues, and inefficient sequential execution. Based on this, we propose a novel paradigm called Parallel Gated Network (PGN) as the new successor to RNN. PGN directly captures information from previous time steps through the designed Historical Information Extraction (HIE) layer and leverages gated mechanisms to select and fuse it with the current time step information. This reduces the information propagation path to $\mathcal{O}(1)$, effectively addressing the limitations of RNN. To enhance PGN's performance in long-range time series forecasting tasks, we propose a novel temporal modeling framework called Temporal PGN (TPGN). TPGN incorporates two branches to comprehensively capture the semantic information of time series. One branch utilizes PGN to capture long-term periodic patterns while preserving their local characteristics. The other branch employs patches to capture short-term information and aggregate the global representation of the series. TPGN achieves a theoretical complexity of $\mathcal{O}(\sqrt{L})$, ensuring efficiency in its operations. Experimental results on five benchmark datasets demonstrate the state-of-the-art (SOTA) performance and high efficiency of TPGN, further confirming the effectiveness of PGN as the new successor to RNN in long-range time series forecasting. The code is available in this repository: \url{https://github.com/Water2sea/TPGN}.
Abstract:Driver distraction remains a leading cause of traffic accidents, posing a critical threat to road safety globally. As intelligent transportation systems evolve, accurate and real-time identification of driver distraction has become essential. However, existing methods struggle to capture both global contextual and fine-grained local features while contending with noisy labels in training datasets. To address these challenges, we propose DSDFormer, a novel framework that integrates the strengths of Transformer and Mamba architectures through a Dual State Domain Attention (DSDA) mechanism, enabling a balance between long-range dependencies and detailed feature extraction for robust driver behavior recognition. Additionally, we introduce Temporal Reasoning Confident Learning (TRCL), an unsupervised approach that refines noisy labels by leveraging spatiotemporal correlations in video sequences. Our model achieves state-of-the-art performance on the AUC-V1, AUC-V2, and 100-Driver datasets and demonstrates real-time processing efficiency on the NVIDIA Jetson AGX Orin platform. Extensive experimental results confirm that DSDFormer and TRCL significantly improve both the accuracy and robustness of driver distraction detection, offering a scalable solution to enhance road safety.
Abstract:Biological age scores are an emerging tool to characterize aging by estimating chronological age based on physiological biomarkers. Various scores have shown associations with aging-related outcomes. This study assessed the relation between an age score based on brain MRI images (BrainAge) and an age score based on metabolomic biomarkers (MetaboAge). We trained a federated deep learning model to estimate BrainAge in three cohorts. The federated BrainAge model yielded significantly lower error for age prediction across the cohorts than locally trained models. Harmonizing the age interval between cohorts further improved BrainAge accuracy. Subsequently, we compared BrainAge with MetaboAge using federated association and survival analyses. The results showed a small association between BrainAge and MetaboAge as well as a higher predictive value for the time to mortality of both scores combined than for the individual scores. Hence, our study suggests that both aging scores capture different aspects of the aging process.
Abstract:Blind image deblurring is a challenging low-level vision task that involves estimating the unblurred image when the blur kernel is unknown. In this paper, we present a self-supervised multi-scale blind image deblurring method to jointly estimate the latent image and the blur kernel via alternating optimization. In the image estimation step, we construct a multi-scale generator network with multiple inputs and multiple outputs to collaboratively estimate latent images at various scales, supervised by an image pyramid constructed from only the blurred image. This generator places architectural constraints on the network and avoids the need for mathematical expression of image priors. In the blur kernel estimation step, the blur kernel at each scale is independently estimated with a direct solution to a quadratic regularized least-squares model for its flexible adaptation to the proposed multi-scale generator for image estimation. Thanks to the collaborative estimation across multiple scales, our method avoids the computationally intensive coarse-to-fine propagation and additional image deblurring processes used in traditional mathematical optimization-based methods. Quantitative and qualitative experimental results on synthetic and realistic datasets demonstrate the superior performance of our method, especially for handling large and real-world blurs.
Abstract:Current text-video retrieval methods mainly rely on cross-modal matching between queries and videos to calculate their similarity scores, which are then sorted to obtain retrieval results. This method considers the matching between each candidate video and the query, but it incurs a significant time cost and will increase notably with the increase of candidates. Generative models are common in natural language processing and computer vision, and have been successfully applied in document retrieval, but their application in multimodal retrieval remains unexplored. To enhance retrieval efficiency, in this paper, we introduce a model-based video indexer named T2VIndexer, which is a sequence-to-sequence generative model directly generating video identifiers and retrieving candidate videos with constant time complexity. T2VIndexer aims to reduce retrieval time while maintaining high accuracy. To achieve this goal, we propose video identifier encoding and query-identifier augmentation approaches to represent videos as short sequences while preserving their semantic information. Our method consistently enhances the retrieval efficiency of current state-of-the-art models on four standard datasets. It enables baselines with only 30\%-50\% of the original retrieval time to achieve better retrieval performance on MSR-VTT (+1.0%), MSVD (+1.8%), ActivityNet (+1.5%), and DiDeMo (+0.2%). The code is available at https://github.com/Lilidamowang/T2VIndexer-generativeSearch.
Abstract:Knowledge-based visual question answering requires external knowledge beyond visible content to answer the question correctly. One limitation of existing methods is that they focus more on modeling the inter-modal and intra-modal correlations, which entangles complex multimodal clues by implicit embeddings and lacks interpretability and generalization ability. The key challenge to solve the above problem is to separate the information and process it separately at the functional level. By reusing each processing unit, the generalization ability of the model to deal with different data can be increased. In this paper, we propose Independent Inference Units (IIU) for fine-grained multi-modal reasoning to decompose intra-modal information by the functionally independent units. Specifically, IIU processes each semantic-specific intra-modal clue by an independent inference unit, which also collects complementary information by communication from different units. To further reduce the impact of redundant information, we propose a memory update module to maintain semantic-relevant memory along with the reasoning process gradually. In comparison with existing non-pretrained multi-modal reasoning models on standard datasets, our model achieves a new state-of-the-art, enhancing performance by 3%, and surpassing basic pretrained multi-modal models. The experimental results show that our IIU model is effective in disentangling intra-modal clues as well as reasoning units to provide explainable reasoning evidence. Our code is available at https://github.com/Lilidamowang/IIU.