Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
Abstract:Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent across domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to modify a reference image according to manipulation text to accurately retrieve a target image, especially when the reference image is missing essential target content. In this paper, we propose a novel prediction-based mapping network, named PrediCIR, to adaptively predict the missing target visual content in reference images in the latent space before mapping for accurate ZS-CIR. Specifically, a world view generation module first constructs a source view by omitting certain visual content of a target view, coupled with an action that includes the manipulation intent derived from existing image-caption pairs. Then, a target content prediction module trains a world model as a predictor to adaptively predict the missing visual information guided by user intention in manipulating text at the latent space. The two modules map an image with the predicted relevant information to a pseudo-word token without extra supervision. Our model shows strong generalization ability on six ZS-CIR tasks. It obtains consistent and significant performance boosts ranging from 1.73% to 4.45% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/predicir.
Abstract:Zero-shot learning (ZSL) aims to train a model on seen classes and recognize unseen classes by knowledge transfer through shared auxiliary information. Recent studies reveal that documents from encyclopedias provide helpful auxiliary information. However, existing methods align noisy documents, entangled in visual and non-visual descriptions, with image regions, yet solely depend on implicit learning. These models fail to filter non-visual noise reliably and incorrectly align non-visual words to image regions, which is harmful to knowledge transfer. In this work, we propose a novel multi-attribute document supervision framework to remove noises at both document collection and model learning stages. With the help of large language models, we introduce a novel prompt algorithm that automatically removes non-visual descriptions and enriches less-described documents in multiple attribute views. Our proposed model, MADS, extracts multi-view transferable knowledge with information decoupling and semantic interactions for semantic alignment at local and global levels. Besides, we introduce a model-agnostic focus loss to explicitly enhance attention to visually discriminative information during training, also improving existing methods without additional parameters. With comparable computation costs, MADS consistently outperforms the SOTA by 7.2% and 8.2% on average in three benchmarks for document-based ZSL and GZSL settings, respectively. Moreover, we qualitatively offer interpretable predictions from multiple attribute views.
Abstract:This paper addresses the inherent limitations of conventional bottleneck structures (diminished instance discriminability due to overemphasis on batch statistics) and decoupled heads (computational redundancy) in object detection frameworks by proposing two novel modules: the Instance-Specific Bottleneck with full-channel global self-attention (ISB) and the Instance-Specific Asymmetric Decoupled Head (ISADH). The ISB module innovatively reconstructs feature maps to establish an efficient full-channel global attention mechanism through synergistic fusion of batch-statistical and instance-specific features. Complementing this, the ISADH module pioneers an asymmetric decoupled architecture enabling hierarchical multi-dimensional feature integration via dual-stream batch-instance representation fusion. Extensive experiments on the MS-COCO benchmark demonstrate that the coordinated deployment of ISB and ISADH in the YOLO-PRO framework achieves state-of-the-art performance across all computational scales. Specifically, YOLO-PRO surpasses YOLOv8 by 1.0-1.6% AP (N/S/M/L/X scales) and outperforms YOLO11 by 0.1-0.5% AP in critical M/L/X groups, while maintaining competitive computational efficiency. This work provides practical insights for developing high-precision detectors deployable on edge devices.
Abstract:Recent training-free layout-to-image diffusion models have demonstrated remarkable performance in generating high-quality images with controllable layouts. These models follow a one-stage framework: Encouraging the model to focus the attention map of each concept on its corresponding region by defining attention map-based losses. However, these models still struggle to accurately follow layouts with significant overlap, often leading to issues like attribute leakage and missing entities. In this paper, we propose ToLo, a two-stage, training-free layout-to-image generation framework for high-overlap layouts. Our framework consists of two stages: the aggregation stage and the separation stage, each with its own loss function based on the attention map. To provide a more effective evaluation, we partition the HRS dataset based on the Intersection over Union (IoU) of the input layouts, creating a new dataset for layout-to-image generation with varying levels of overlap. Through extensive experiments on this dataset, we demonstrate that ToLo significantly enhances the performance of existing methods when dealing with high-overlap layouts. Our code and dataset are available here: https://github.com/misaka12435/ToLo.
Abstract:Vision-language models (VLMs) have made significant progress in image classification by training with large-scale paired image-text data. Their performances largely depend on the prompt quality. While recent methods show that visual descriptions generated by large language models (LLMs) enhance the generalization of VLMs, class-specific prompts may be inaccurate or lack discrimination due to the hallucination in LLMs. In this paper, we aim to find visually discriminative prompts for fine-grained categories with minimal supervision and no human-in-the-loop. An evolution-based algorithm is proposed to progressively optimize language prompts from task-specific templates to class-specific descriptions. Unlike optimizing templates, the search space shows an explosion in class-specific candidate prompts. This increases prompt generation costs, iterative times, and the overfitting problem. To this end, we first introduce several simple yet effective edit-based and evolution-based operations to generate diverse candidate prompts by one-time query of LLMs. Then, two sampling strategies are proposed to find a better initial search point and reduce traversed categories, saving iteration costs. Moreover, we apply a novel fitness score with entropy constraints to mitigate overfitting. In a challenging one-shot image classification setting, our method outperforms existing textual prompt-based methods and improves LLM-generated description methods across 13 datasets. Meanwhile, we demonstrate that our optimal prompts improve adapter-based methods and transfer effectively across different backbones.
Abstract:The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various domains, sources, and topics. Effectively integrating these heterogeneous data sources is crucial for optimizing LLM performance. Previous research has predominantly concentrated on domain-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a simple yet effective topic-based data mixing strategy that utilizes fine-grained topics generated through our topic modeling method, DataWeave. DataWeave employs a multi-stage clustering process to group semantically similar documents and utilizes LLMs to generate detailed topics, thereby facilitating a more nuanced understanding of dataset composition. Our strategy employs heuristic methods to upsample or downsample specific topics, which significantly enhances LLM performance on downstream tasks, achieving superior results compared to previous, more complex data mixing approaches. Furthermore, we confirm that the topics Science and Relationships are particularly effective, yielding the most substantial performance improvements. We will make our code and datasets publicly available.
Abstract:Latent diffusion models have exhibited considerable potential in generative tasks. Watermarking is considered to be an alternative to safeguard the copyright of generative models and prevent their misuse. However, in the context of model distribution scenarios, the accessibility of models to large scale of model users brings new challenges to the security, efficiency and robustness of existing watermark solutions. To address these issues, we propose a secure and efficient watermarking solution. A new security mechanism is designed to prevent watermark leakage and watermark escape, which considers watermark randomness and watermark-model association as two constraints for mandatory watermark injection. To reduce the time cost of training the security module, watermark injection and the security mechanism are decoupled, ensuring that fine-tuning VAE only accomplishes the security mechanism without the burden of learning watermark patterns. A watermark distribution-based verification strategy is proposed to enhance the robustness against diverse attacks in the model distribution scenarios. Experimental results prove that our watermarking consistently outperforms existing six baselines on effectiveness and robustness against ten image processing attacks and adversarial attacks, while enhancing security in the distribution scenarios.
Abstract:Vertical Federated Learning (VFL) has garnered significant attention as a privacy-preserving machine learning framework for sample-aligned feature federation. However, traditional VFL approaches do not address the challenges of class and feature continual learning, resulting in catastrophic forgetting of knowledge from previous tasks. To address the above challenge, we propose a novel vertical federated continual learning method, named Vertical Federated Continual Learning via Evolving Prototype Knowledge (V-LETO), which primarily facilitates the transfer of knowledge from previous tasks through the evolution of prototypes. Specifically, we propose an evolving prototype knowledge method, enabling the global model to retain both previous and current task knowledge. Furthermore, we introduce a model optimization technique that mitigates the forgetting of previous task knowledge by restricting updates to specific parameters of the local model, thereby enhancing overall performance. Extensive experiments conducted in both CIL and FIL settings demonstrate that our method, V-LETO, outperforms the other state-of-the-art methods. For example, our method outperforms the state-of-the-art method by 10.39% and 35.15% for CIL and FIL tasks, respectively. Our code is available at https://anonymous.4open.science/r/V-LETO-0108/README.md.
Abstract:Multimodal Federated Learning (MFL) enables multiple clients to collaboratively train models on multimodal data while ensuring clients' privacy. However, modality and task heterogeneity hinder clients from learning a unified representation, weakening local model generalization, especially in MFL with mixed modalities where only some clients have multimodal data. In this work, we propose an Adaptive prototype-based Multimodal Federated Learning (AproMFL) framework for mixed modalities and heterogeneous tasks to address the aforementioned issues. Our AproMFL transfers knowledge through adaptively-constructed prototypes without a prior public dataset. Clients adaptively select prototype construction methods in line with tasks; server converts client prototypes into unified multimodal prototypes and aggregates them to form global prototypes, avoid clients keeping unified labels. We divide the model into various modules and only aggregate mapping modules to reduce communication and computation overhead. To address aggregation issues in heterogeneity, we develop a client relationship graph-based scheme to dynamically adjust aggregation weights. Extensive experiments on representative datasets evidence effectiveness of AproMFL.
Abstract:This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0